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Foreword

The workshop “Models for the Sustainable Management of Temperate Plantation Forests”
was held at the INRA Centre de Recherches de Bordeaux-Aquitaine, 7–9 September, 2000.
This event was organised by the Institut Européen de la Forêt Cultivée (IEFC) – an EFI
Regional Project Centre – as a satellite activity of the 7th EFI annual conference in Lisbon, 2–
4 September, 2000. This Proceedings is the first publication produced by a Regional Project
Centre of EFI.

The aims of the workshop were: (i) to review the current use of models in understanding
and quantifying the sustainable management of plantation forests; (ii) to encourage links
between tree and soil modellers; (iii) to encourage links between researchers and end-users;
and (iv) to identify priorities for future research and collaboration.

The programme of talks and discussions was attended by 54 participants from 12 countries,
including 18 students from the Ecole Nationale d’Ingénieurs des Travaux Agricoles (ENITA)
in Bordeaux. A visit was made to the experimental site of INRA’s Forest Research Station at
Pierroton.

The present selection of papers from the workshop provides an overview of recent progress
in developing and applying models to problems of sustainable forest management. The
papers cover the full range from detailed, process-based ecosystem models to empirical
growth and yield models and decision-support tools.

IEFC is organizing a follow-up meeting in Portugal (6–8 June, 2002). Further information
on this meeting and other IEFC activities can be obtained from the IEFC web site
www.iefc.net.

Jean-Michel Carnus
Roderick Dewar
Denis Loustau
Margarida Tomé
Christophe Orazio
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Maximizing Wood Yield, Carbon Storage
and Efficient Use of N

M.G.R. Cannell and J.H.M. Thornley

Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK

Abstract

It is argued that, in most circumstances, unmanaged forests are likely to store more carbon (in
trees and soil) than plantations which are clearfelled to maximize volume yield (with carbon
stored in trees, soil and wood products) assuming no change in species or site conditions. But
is there a simple trade-off between carbon storage and volume yield? And which harvesting
regime is most efficient in the use of nitrogen?

A mechanistic forest ecosystem simulator, which couples carbon, nitrogen and water (the
Edinburgh Forest Model) was calibrated to mimic the growth of a pine plantation in a
Scottish climate. It was then run to equilibrium with various harvesting regimes.

More carbon was stored in an unmanaged forest than in any regime in which wood was
harvested (35.2 kgC m–2). Plantations, clearfelled for maximum volume yield, gave moderate
carbon storage (14.3 kgC m–2) and timber yield (15.6 m3 ha–1yr–1). Annual removal of 10 or
20% of woody biomass per year gave both a high timber yield (25 m3 ha–1yr–1) and high
carbon storage (20 to 24 kgC m–2). The efficiency of the latter regimes could be attributed (in
the model) to high light interception and net primary productivity, but less evapotranspiration
and summer water stress than in the unmanaged forest, high litter input to the soil giving high
soil carbon and N

2
 fixation, low maintenance respiration and low nitrate leaching owing to

soil mineral pool depletion.
It was concluded that there is no simple inverse relationship between the amount of timber

harvested from a forest and the amount of carbon stored. In theory, management regimes
which maintain a continuous canopy cover and mimic, to some extent, regular natural forest
disturbance, might achieve the best combination of high volume yield, carbon storage and
low loss of nitrogen to the environment. There may, however, be biological, economic and
practical constraints on realizing this theoretical ideal.

Keywords: carbon, wood yield, nitrogen, sequestration, management, model, plantation
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1. Introduction

Three of the many objectives of forest management are: (i) to maximise wood yield; (ii) to
maximise carbon storage in biomass, soils and wood products; and (iii) to minimise losses of
nitrogen as nitrate to ground-waters and N

2
O to the atmosphere. These are all aspects of C

and N management and involve tradeoffs. The Edinburgh Forest Model, which simulates the
flows of C, N and water in forest ecosystems, has enabled the tradeoffs to be explored
(Thornley and Cannell 2000).

What, in theory, would be the best way to manage forests to optimise the three objectives
stated above? The answer is not self evident, because of the many interactions and feedbacks
between plant and soil processes in a forest ecosystem, involving light, nutrients and water.
Different management regimes perturb the system in different ways. Also, the answer would
be difficult to derive by experimentation, because it would take centuries before valid
estimates of sustained yield and carbon storage could be made. Transient responses would
depend on the initial conditions and could differ in sign as well as magnitude from the
equilibrium response. A model that represents all the essential interacting processes offers a
way forward.

In this paper, we first examine the evidence that unmanaged forests store more carbon and
‘leak’ less nitrogen than plantations. We then present model results for a range of theoretical
harvesting regimes, which suggest that regular small harvests of wood may maximize both
yields and carbon storage and give most control over nitrogen losses to the environment.

Figure 1. Notional changes in the amount of carbon stored in biomass in an unmanaged forest and four
rotations of a plantation on the same site. Both are subject to periodic disturbance by fire or pest
outbreaks. The plantation is assumed to be clear-felled at the time of maximum mean annual volume
increment.

2. Unmanaged Forests Compared With Plantations

2.1 Carbon storage in biomass

At first glance, it might be supposed that more carbon may be removed from the atmosphere
by replacing old, slowly growing forests with young, fast-growing plantations, and then
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harvesting and storing the wood. But such reasoning ignores the fact that old undisturbed
forests can contain huge amounts of living and dead biomass and plantations are often felled
well before they reach maturity. Harmon et al. (1990) found that 450-year-old Douglas fir/
western hemlock forests in the Pacific Northwest contain over twice as much carbon as 60-
year-old Douglas fir plantations, and that this is also true for a landscape of old-growth
forests in different stages of recovery from natural disturbance compared with a landscape of
plantations of different ages.

If plantations are harvested at the time of maximum mean annual increment, it can be
shown that, at equilibrium, the time-averaged carbon storage in the trees – from planting to
clearfelling – is only about one-third of the maximum amount of carbon stored in the forest at
maturity – with a variety of assumed sigmoidal growth curves (Cooper 1983; Dewar 1991).
In other words, in theory, up to two-thirds of the carbon stored in trees in a mature, old-
growth forest is eventually lost (i.e. transferred to the atmosphere) when it is replaced by
plantations harvested for maximum volume yield.

In practice, the loss of carbon may be less than two-thirds. First, both the unmanaged and
plantation forests will be subject to periodic disturbance, as illustrated in Figure 1.
Disturbance may lower carbon storage proportionately more in unmanaged forests than in
plantations. Secondly, plantation forests may be managed to maximize timber values rather
than volumes. Greatest values may occur when forests are left to grow past the time of
maximum mean annual volume increment, further towards maturity. Thirdly, old-growth
forests may be replaced by faster-growing tree species, with site improvements, and so follow
a steeper sigmoidal growth curve than the native species. And fourthly, we must include the
carbon stored in the wood products derived from plantations, which may have a longer
lifetime than dead trees in a natural forest.

If all of the above four factors operate, then the difference in carbon storage between
unmanaged and managed forests could be small. However, if we make the assumption that
plantations are felled to maximize timber volumes, with no change in species or site
conditions, it becomes difficult to construct scenarios in which equilibrium carbon storage is
not substantially lowered by replacing unmanaged forests with plantations. Calculations made
for European forests showed that plantations would have the same carbon storage capacity as
unmanaged forests only if the average wood product lifetime was 2–3 times the rotation
period – a scenario which seems unlikely without incurring carbon costs in wood preservation
(Cannell et al. 1992).

2.2 Carbon storage in forest soils

In theory, it seems inevitable that equilibrium carbon storage in soils should be greater in
unmanaged forests than in plantations at the same site which are clear-felled for maximum
volume yield. The reason is that equilibrium soil carbon mass is proportional to total annual
litter input. At equilibrium, total litter input to the soil is equal to net primary production. And
net primary production is roughly proportional to intercepted solar radiation (see Waring et
al. 1998). Because unmanaged forests maintain a continuous canopy they are likely, over
time, to intercept more solar radiation than plantations, have a higher net productivity and
greater litter input to the soil. Consequently, at equilibrium, unmanaged forests may be
expected to have more soil carbon. Also, soil disturbance during site preparation is likely to
deplete soil carbon in plantation forests.

However, over short timescales, in the first years or decades following conversion of
unmanaged forests to plantations (well before equilibrium is reached) it may be difficult to
detect a depletion in soil carbon. Thus, Johnson (1992) found no general trend towards lower
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soil carbon following forest harvesting and site preparation in a review of thirteen studies.
Also, when fertilizers are added, and fast-growing or nitrogen-fixing trees are planted, net
primary production of plantations may exceed that of the native forest, even when averaged
over a rotation, giving more soil carbon.

2.3 Carbon storage predictions of the Edinburgh Forest Model

The Edinburgh Forest Model was parameterised to simulate the growth of a pine forest and
was run to equilibrium in the climate of southern Scotland to simulate an unmanaged and
plantation forest, with the same basic growth characteristics (see Thornley and Cannell 2000).
The plantation was clearfelled every 60 years, at approximately the time of maximum mean
annual volume increment, and yielded 15.6 m3 ha–1yr–1 of timber.

At equilibrium, the unmanaged forest contained 35.3 kgC m–2 , consisting of 13.2 kgC m–2

in the trees and 22.1 kgC m–2 in the soil. By contrast, the mean carbon content of the
plantation was only 14.2 kgC m–2 , less than half of that in the unmanaged forest. The
plantation contained an average of only 3.8 kgC m–2 in trees, 6.4 kgC m–2 in soil and 4.0 kgC
m–2 in wood products, which were assumed to have a half-life of 20 years.

Thus, if the species and site conditions remain unchanged and the plantation is clearfelled
to obtain maximum volume yield, the model suggests that total carbon storage, including
wood products, will be decreased by transforming native forests into plantations.

2.4 Nitrogen leakage

Nitrogen is input to forests from the atmosphere and by fixation and is lost by: (i) the removal
of products; (ii) leaching of nitrate; and (iii) gaseous losses associated with nitrification and
denitrification.

Plantations are prone to leaching nitrogen after site preparation and clearfelling, when soil
mineral nitrate pools are not depleted by tree growth and there may be increased drainage of
water through the soil (e.g. Fenn et al. 1998). However, plantations have the advantage that
much of the nitrogen is removed in products and so is under human control. Unmanaged
forests, subject to the same inputs, are likely to leach less nitrogen, but at equilibrium must
lose more nitrogen to the environment, primarily as gases.

2.5 Conclusion

The comparison between unmanaged forests and plantations leads to the conclusion that
timber harvesting carries the risk of lessening carbon storage, even including wood products.
Harvesting gives some control over nitrogen losses, but risks enhanced nitrate leaching.

At first sight, it may be supposed that the more timber that is harvested from a forest the
less carbon is stored. But, if timber were removed by regularly thinning, without clearfelling,
would it be theoretically possible to obtain a high sustained yield of timber, more control over
nitrogen losses and a large store of carbon? Are there tradeoffs between these objectives or is
there an optimum management regime?

Below, we use the Edinburgh Forest Model to estimate sustained timber volume yield,
carbon storage and nitrogen budgets in forests subjected to different harvesting regimes. The
model is parameterised, as above, to simulate a pine forest in the climate of Scotland, but the
principles elucidated may apply to other species in other environments.
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Figure 2. Simulated effects of four forest management regimes on forest biomass (continuous lines),
leaf area index (dashed lines) and long-term equilibrium values for carbon storage in biomass, soil and
wood products (the three numbers on the right, respectively; thus 13.2+22.1+0 means
biomass+soil+products) and mean wood volume yield. The four regimes are: undisturbed forest;
removing 2.5% of woody biomass each year; removing 50% of woody biomass every 20 years; and
thinned plantation. The simulations were made using the Edinburgh Forest Model with parameters for
a pine forest in the climate of southern Scotland.

Figure 3. Theoretical relationship between long-term, equilibrium carbon storage (in trees plus soil and
wood products) and mean wood volume yield. Values are taken from the simulations shown in Figure
2. Harvesting 2.5% woody biomass per year or 50% every 20 years, enables more carbon to be stored
than expected based on a linear interpolation between unmanaged and plantation forests.
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3. Theoretical Effects of Repeatedly Harvesting Small Amounts of Wood

3.1 Removing 2.5% of woody biomass every year or 50% every 20 years

The model was run to equilibrium when removing 2.5% of the total above and belowground
woody biomass each year, or 50% every 20 years, the numerical equivalent. These
harvestings might consist of thinnings or prunings. In this study no account is taken of the
quality or value of the harvested wood and it is assumed that there are no biological
constraints to regrowth or regeneration other than light, water and nutrient supplies..

Removing just 2.5% of woody biomass each year yielded 12.2 m3 ha–1yr–1, 78% of that yielded
by the plantation forest, while storing a total of 28.1 kgC m–2 in biomass, soil and products, twice
that stored in the plantation forest (Figure 2). These numbers may seem remarkably high. They
are theoretically possible because the forest maintains a continuously high leaf area index (~6)
intercepting most of the radiation and maintaining a continuously high net primary productivity.
Removing 50% of the woody biomass every 20 years gave similarly high productivities, wood
yields and carbon storage (Figure 2). Thus, thinning did not have to be done every year to
achieve a combination of high yield and carbon storage. Within limits, it was the average removal
rate that was important, giving flexibility to adopt various thinning regimes.

The straight line in Figure 3 shows the simple trade-off between carbon storage and volume
yield predicted by linearly interpolating between unmanaged forests with plantations,
clearfelled for maximum volume yield. Harvesting 2.5% of woody biomass each year, or 50%
every 20 years, gave points above that line – storing more carbon than expected for the
volume yield, or a greater yield for the amount of carbon stored. Regular harvesting may
therefore be a better means of achieving these dual objectives.

3.2 Removing 10% or 20% of woody biomass every year

More surprisingly, thinning or pruning the forest to remove 10% or 20% of the woody
biomass each year yielded a remarkable 25.4 and 25.7 m3 ha–1yr–1, respectively, about 60%
more than that yielded by the plantation forest (Figure 4) while storing a total of 23.7 and
20.5 kgC m–2, respectively, significantly more than stored in the plantation forest. Similarly
high yields and carbon storage were predicted by varying the harvesting interval, within
limits, but removing the same percentage of woody biomass (e.g. removing 30% every 3
years rather than 10% every year).

Figure 5 shows that these harvesting regimes gave points well off the linear interpolation,
calling into question the notion that any simple tradeoff between carbon storage and volume
yield really exists. Regularly thinning forests seem to result in stands that are potentially
considerably more efficient at generating, storing and yielding carbon than conventionally
clearfelled plantations.

However, there is clearly a limit to the severity of annual thinning, beyond which the forest
has such a low leaf area index that it is no longer productive. This limit was surpassed with
the removal of 40% woody biomass every year, which resulted in very low leaf areas, yield
and carbon storage (Figure 5).

3.3 The nitrogen budget of regularly thinned stands

As expected, in the unmanaged forest, leaching loses were small, because soil water drainage
was small, and the N balance was maintained by gaseous loss. In the plantation forest, almost
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Figure 4. Simulated effects of four forest management regimes on forest biomass (continuous lines),
leaf area index (dashed lines) and long-term equilibrium values for carbon storage in biomass, soil and
wood products (the three numbers on the right, respectively) and mean wood volume yield. The four
regimes are undisturbed forest, removing 10% of woody biomass each year, removing 20% of woody
biomass each year, and thinned plantation. The simulations were made using the Edinburgh Forest
Model with parameters for a pine forest in the climate of southern Scotland.

Figure 5. Theoretical relationship between long-term, equilibrium carbon storage (in trees plus soil and
wood products) and mean wood volume yield, for a range of forest management regimes.
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half of the N output was in harvested products, but leaching losses were also relatively high,
owing to mineralization of litter and high drainage during the years after clearfelling,

In the 10 and 20% annually thinned natural forests, about 47% of the nitrogen output was in
harvested products, while leaching losses were no greater than in the undisturbed forest, owing to
low drainage and continued depletion of the soil mineral pools by root uptake (driven by tree
growth). Thus, these thinned natural forests avoided the N loss to groundwaters that occurred in
plantations and yet captured (in wood products) a substantial fraction of the N that was otherwise
lost as gases in undisturbed forests (Thornley and Cannell 2000).

Thus, the regularly thinned forests used nitrogen efficiently as well as excelling in carbon
storage and volume yield.

3.4 Reasons for the high performance for regularly thinned stands

As mentioned, the high performance of the 10 and 20% thinned natural forests could be
traced to high canopy photosynthesis and net primary productivity. This resulted from a
combination of moderately high light interception (with sustained leaf area indices about 4),
and also lower evapotranspiration and less water stress on summer days than in the
undisturbed forest, plus a lower respiratory load (net/gross photosynthesis was about 0.65
compared with 0.60 in plantations and undisturbed forests; Thornley and Cannell 2000).

The biomass in these forests was obviously decreased by thinning, compared to the
undisturbed forest, but even with 20% of the biomass removed each year, there was 3.0 kgC
m–2 in biomass, about 80% of that in the plantation forest averaged over a rotation. More
importantly, high sustained net primary production maintained a high input of litter to the soil,
generating over twice as much soil carbon in forests subject to 10 and 20% annual thinning as
in the plantation forest.

4. Discussion

4.1 Concluded principle

The salient conclusions from this study are that (i) unmanaged forests will normally store
more carbon than plantations clearfelled to maximize volume yield, including the wood
product store, but (ii) there is no simple inverse relationship between the amount of timber
harvested from a forest and the amount of carbon stored in the ecosystem and wood products.
The method of harvesting is all important. In particular, regular removal of timber from a
forest (annually or every few years) in a way that maintains a continuous canopy can, in
theory, give substantially higher sustained yields and levels of carbon storage than periodical
clearfelling, as in conventional plantations. Runs of the model in other temperate climates and
with different calibrations and nitrogen deposition levels suggested that, qualitatively, this
conclusion might apply in a wide range of forest types.

It should be stressed, however, that we claim only to have elucidated a principle, not to
have made quantitative predictions, much less to have considered the practicalities, costs and
other implications of different harvesting regimes. We are aware that, in some situations,
there may be biological constraints that may limit forest recovery from thinning, which are
not included in the Edinburgh Forest Model, and the assumption that plantations are managed
for maximum volume yield does not always apply.
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4.2 Essential features of unmanaged, plantation and regularly thinned forests

In the model, differences between unmanaged, plantation, and regularly thinned forests in
average leaf area and biomass affected evapotranspiration and light interception, which in
turn affected the carbon and nitrogen dynamics.

The unmanaged forest maintained a high leaf area index and biomass, giving high light
interception, but also high evapotranspiration and summer water stress, so that net primary
production was only moderately high. However, leaching losses were small (because of low
drainage) and, because no biomass was removed, soil organic matter levels and N

2
 fixation

rates were moderately high. The net result was high carbon sequestration in biomass and
soils, but, of course, no yield and a high loss of nitrogen as gases.

The plantation forest had a low leaf area index and biomass, averaged over a rotation,
resulting in relatively low light interception, low evapotranspiration, high drainage and nitrate
leaching, leading to low net primary production, despite relatively little summer water stress.
Low net primary production, combined with the removal of wood, resulted in low soil organic
matter levels and N

2
 fixation rates. The outcome was a combination of moderate carbon

sequestration, moderate wood yield, and considerable nitrogen loss to groundwaters.
The regularly thinned forests, which were managed to remove about 10% of the biomass each

year (or 50% every 5 years) maintained a moderately high, continuous leaf area and biomass,
giving moderate light interception and evapotranspiration, resulting in relatively little summer
water stress. Consequently, net primary production was high, sustaining both a high yield and
litter input to the soil, resulting in moderately high soil organic matter levels and high N

2
 fixation

rates. The outcome was moderately high carbon sequestration and high wood yield.

4.3 Tradeoffs between multiple objectives

The study suggested that, if the objective were simply to maximize timber volume yield
(regardless of cost or value) the order of optimal management system would be regularly
thinned forest > plantation > undisturbed forest, whereas if the objective were to maximize
carbon storage, the order would be undisturbed forest > regularly thinned forest > plantation
(Figure 5). If the objective were to minimize uncontrolled N emissions to the environment,
the order would be the same as that to maximize timber volume yield.

In the simulations, more carbon was stored in the undisturbed forest than in any
management regime in which wood was harvested, including wood products, supporting
previous analyses which compared plantations with undisturbed forests (see Cannell 1995)
and suggesting that any biomass removal from a forest will lower carbon storage, without
unrealistic assumptions on the rates of decay of harvested wood.

Plantations offered the worst combination of yield and carbon storage and regularly thinned
forests the best, provided thinning removed not less than about 5% and not more than about
25% of the woody biomass each year. There seemed to be some scope for flexibility in
thinning frequency, in that, for instance, harvesting 5% of the woody biomass per year gave
similar results to harvesting 25% every 5 years.

4.4 Efficiency of regularly thinned forests

Why were regularly thinned forests so efficient in the model? The main features were as
follows.
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• The continuous canopy and moderately high leaf area index (about 4) gave high light
interception and net primary productivity; there was no period of slow recovery, which
occurs after clearfelling.

• However, the leaf area index was less than in an undisturbed forest and so
evapotranspiration was less, with less risk of water stress on dry summer days, also
enhancing net primary productivity.

• High net primary productivity ensured high litter input to the soil and a large equilibrium
soil carbon store, also favouring non-symbiotic N

2
 fixation.

• Regular thinning meant that the forest had a lower biomass than an undisturbed forest and
was continually growing, resulting in less maintenance respiration.

• Continuous growth also meant that the soil mineral nitrate pool remained depleted and
nitrogen losses by leaching were reduced.

4.5 General remarks

The conclusion that regular thinning is better than clearfelling is in keeping with much of the
current discussion regarding forest management to sustain multiple functions, including the
maintenance of biodiversity, maintaining soil fertility, preventing erosion and so on (Gale and
Cordray 1991; Wiersum 1995). It is increasingly recognized that the many demands made on
forests may best be satisfied by maintaining an ‘intact forest ecosystem’ or ‘ecological
integrity’ (Armstrong 1999). This analysis offers some scientific basis for those concepts with
regard to carbon dynamics in the soil-plant system, as affected by nitrogen dynamics and the
water balance.
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Abstract

Stand thinning effects on present and future productivity and carbon sequestration in a Scots
pine forest were examined using the ASPECTS model. Downscaled GCM scenarios were
generated from the Canadian Global Coupled Model (CGCM1) and two years of on-site
measurements at the Brasschaat experimental forest. Simulated stand thinning had major
effects on predicted forest carbon fluxes, due to reduced photosynthesis and autotrophic
respiration, and increased heterotrophic respiration. This result implies that the history of
stand thinning needs to be considered for accurate simulations of the net ecosystem exchange
(NEE) of carbon between forest ecosystems and the atmosphere. ASPECTS predicted that the
productivity of Belgian Scots pine forests will increase under 21st century climate, while NEE
will become more variable due to (i) the effect of thinning an increased woody biomass, and
(ii) increased variability of the 21st century climate.

Keywords: thinning, ASPECTS, modelling, NEE, climate change

1. Introduction

Concerns about global environmental change have led to numerous research programmes to
assess the potential mitigating effects of temperate forests on the increase in atmospheric CO

2

concentration. The net CO
2
 flux between the atmosphere and temperate forest canopies has

been measured by eddy-covariance techniques in a variety of European and North American
forests (Greco and Baldocchi 1996; Valentini et al. 1996; Baldocchi 1997; Valentini et al.
2000). Some of these monitoring programmes have now accumulated 4 years of continuous
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NEE data. While this data represents a tremendous amount of information, it is of short
duration relative to the life span of a forest. Measured CO

2
 fluxes in forest ecosystems result

from the combined effects of short-term and long-term processes (Rasse et al. 2001a). For
example, autotrophic respiration is a function of: (1) temperature, which displays substantial
sub-hourly variations; (2) tissue N concentration, which potentially varies in the course of the
growing season; and (3) total biomass and the fraction of sapwood, which depend on stand
age and long-term forest growth.

Until now, modelling studies of forest NEE, using eddy-covariance measurements for
calibration and validation, have mostly focused on the effects of the daily and seasonal cycles
of climatic variables such as temperature, radiation, and water vapour pressure deficit (VPD)
(Baldocchi and Harley 1995; Baldocchi 1997; Law et al. 2000). Nevertheless, models are
also needed for long-term simulations of forest growth, in order to predict the carbon stored
in forest ecosystems over the 21st century (Grant and Nalder 2000). These longer-term growth
processes, in addition to plot management history, potentially affect current NEE
measurements, although they have received little attention until now (Rasse et al. 2001b).
Stand thinning generates large amounts of fresh litter from leaves, branches, fine roots and
coarse roots. The decomposition of this litter will affect the soil CO

2
 efflux for many years

following thinning, especially for woody branch and coarse root tissues.
Temperate European forests are nearly all subjected to strict management plans by

foresters. Stand thinning is an essential element of forest management, which is conducted
throughout the life span of a forest. The first objective of this modelling study was to estimate
the effects of 20th century stand thinning on current CO

2
 fluxes in temperate forests. The

second objective was to predict forest responses to 21st century environmental conditions
under different scenarios of stand thinning. To meet both of these objectives, we used the
ASPECTS model because of its ability to predict long-term forest growth while predicting all
C fluxes within the forest ecosystem on a half-hourly basis (Rasse et al. 2000; Rasse
et al. 2001a).

2. Model Development

2.1 General description of the ASPECTS model

ASPECTS is a mechanistic model designed to predict the dynamics of carbon reservoirs in
temperate forest ecosystems (Rasse et al. 2000; Rasse et al. 2001a). Nine carbon reservoirs
are represented: sugar, starch, foliage, branches, stems, coarse roots, fine roots, soil litter and
soil organic matter (SOM). Because the carbon cycle is closely linked to the water cycle, a
complete hydrological module was included in ASPECTS. The evolution of carbon and water
reservoirs is computed on half-hourly time steps as the difference between incoming and
outgoing fluxes. Although the integration time step is short, ASPECTS is designed to
simulate the evolution of carbon and water reservoirs over periods longer than a century.
Initial conditions are defined for forests of any age, i.e. from seedlings to mature stands, and
ASPECTS simulates the subsequent evolution of each carbon pool, including tree growth.

ASPECTS simulates two phenological phases for evergreen trees: (1) leaf expansion in the
spring; and (2) no leaf growth during the rest of the year. Bud burst is triggered when degree-
days accumulated since February 10 over a base temperature of 5ºC reach a thermal time
requirement specific to each tree species, as proposed by Hoffman (1995). Cessation of leaf
growth is implemented when the leaf area index (LAI) reaches a maximum value defined by
an allometric relationship with wood biomass (Figure 1).
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Photosynthesis and respiration

ASPECTS computes rates of canopy photosynthesis according to the theoretical model of de
Pury and Farquhar (1997), which is a big-leaf model with a separate integration of sunlit- and
shaded-leaf photosynthesis. Within the leaf photosynthesis sub-model, stomatal conductance
is computed by the semi-empirical model of Leuning (1995), which relates stomatal
conductance to net assimilation, the CO

2
 concentration at the leaf surface, and the water

vapour pressure deficit. In addition, a feedback of soil water stress on stomatal conductance
has been introduced. Maintenance respiration costs are computed for each plant organ
according to a generalised version of the equation proposed by Zogg et al. (1996), which
relates maintenance respiration to the total carbon content of each plant organ, the fraction of
living tissue for the reservoir, tissue nitrogen concentration, and plant tissue temperature.
Growth respiration is computed as 20% of growth assimilates allocated to each reservoir, as
suggested by Hoffman (1995). In addition, growth respiration of fine roots is increased as a
function of soil water and temperature stresses (Rasse et al. 2001b). This increase in growth
respiration represents the additional energetic costs associated with fine root growth in stress
conditions.

Allocation

Photosynthetically-fixed carbon is stored in the sugar pool. This pool regulates carbon
allocation to plant organs, and is necessary because ASPECTS computes photosynthesis at
short time steps. Sucrose (Su) is allocated to tree organs to satisfy their need for maintenance
respiration and growth, which includes both biomass increment and growth respiration.
ASPECTS allocates sucrose in priority to maintenance respiration. Growth of tree organs is
then conditional upon a supply of assimilates from the sugar pool exceeding the demand from
maintenance respiration.

The ASPECTS model partitions assimilates between above- and below-ground organs
according to phase-dependent ratios. During the leaf expansion phase, all assimilates are

Figure 1. Maximum annual LAI as a function of stemwood biomass. After thinning, the function is
reduced by an LAI reduction term given in equations 1 to 4.
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allocated to non-woody tissues, i.e. leaves and fine roots, as suggested by Lüdeke et al.
(1994). During the rest of the year, allocation in ASPECTS is stand-age dependent because
studies have shown that the root to shoot ratio of temperate trees decreases asymptotically
with time from saplings to mature stands (Vanninen et al. 1996; Lee et al. 1998). Growth
assimilates allocated to above-ground organs are then partitioned among leaves, branches and
stems, while below-ground assimilates are partitioned between coarse and fine roots.

Litter production and decomposition

Needle senescence from evergreen trees is simulated at a constant rate throughout the year.
Turnover time of fine roots is a crucial parameter that drives the largest carbon input to the
soil organic matter. Published data for evergreen and deciduous trees indicate that the
duration of fine root turnover cycles approximates 10 to 12 months (Harris et al. 1977;
Usman et al. 1997). Because the life span of fine roots is difficult to estimate precisely, we
chose a value of one year. Litter decomposition is calculated as a simple function of soil
water content, temperature, and pH. The temperature dependence of litter decomposition is
described in ASPECTS according to an equation specific to forests (Nemry et al. 1996).

Hydrology and soil temperature

In ASPECTS, soil water content is computed in a series of user-defined soil layers. The net
flux of water between two adjacent soil horizons is computed by solving Richards’ equation
for unsaturated flow, according to the methodology of Viterbo and Beljaars (1995). The
hydraulic conductivity and the relationship between the volumetric water content (θ) of each
layer and its pressure head are parameterised according to Saxton et al. (1986). The bottom
water flow boundary condition is free drainage, i.e., ∂θ /∂z = 0, where z is the depth.
Evaporation from the soil surface which defines the upper boundary condition was computed
following Mahfouf and Noilhan (1991). Total water uptake by the tree, which is simulated in
the photosynthesis and stomatal conductance subroutines, is distributed among the various
soil layers according to the root density and the water and aeration stresses of each layer.
ASPECTS also simulates soil temperature for each soil layer by solving the heat diffusion
equation, with a bottom boundary condition set to zero heat flux, and an upper boundary
condition defined by equating soil surface temperature to air temperature.

2.2 Simulation of stand thinning

Based on literature data, we assumed that the normal planting density for Scots pine is
approximately 8000 trees ha–1 (Kramer and Ross 1989; Ruha and Varmola 1997). This high
density is rapidly reduced to less than 3000 trees ha–1 by pre-commercial thinning operations.
Stand thinning is simulated by decreasing all tree carbon reservoirs by the proportion of wood
biomass removed from the forest plots. Biomass removal data are not always available. Data
on the reduction in stand density at thinning is more readily available than biomass removal
data. These two proportions are not equal because foresters tend to eliminate the smallest
trees first, which implies that the decrease in wood biomass is smaller than the decrease in
stand density. We estimated the proportion of wood biomass removal in thinnings by dividing
the reduction in stand density by a factor 1.625, as recalculated from published data (Tullus
et al. 1989).
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Following thinning, LAI is immediately decreased in proportion to the amount of leaf
biomass lost. The removal of trees produces gaps in the canopy, thus reducing the maximum
annual LAI reached by the forest canopy for several years following stand thinning. In theory,
the relationship built into the model between maximum annual LAI and stemwood biomass
(Figure 1) automatically leads to a reduction in LAI when stem wood is harvested.
Nevertheless, this relationship alone does not lead to a proper estimation of long-term
thinning effects on LAI, because it predicts more important thinning effects on younger
stands. No thinning effects would be simulated when the relationship between LAI and
stemwood biomass has reached a plateau (Figure 1). In reality, young stands recover from
canopy gaps faster than older stands, especially because bigger gaps result from the removal
of older trees as compared to younger trees.

In ASPECTS we introduced an LAI reduction term, which is calculated at thinning as:

cutpotmax,red fLAILAI ×= [Equation 1]

where: LAI
red

 is the immediate reduction in maximum annual LAI due to thinning, LAI
max,pot

 is
the potential maximum annual LAI as defined in Figure 1, and f

cut
 is the proportion of woody

biomass that is thinned. After thinning, the recovery in LAI is simulated by a decrease in
LAI

red
 over time, according to:

( ) ( ) ( )ryredyred tLAILAI 111 −×= − [Equation 2]

where: LAI
red(y)

 and LAI
red(y–1)

 are the reduction terms in years y and y–1, respectively, and t
r

(yr) is proportional to the half-life of LAI
red

. As mentioned above, t
r
 is a function of stand age

(Y, yr):

501 ≤= Y,.tr [Equation 3]

100505 ≤≤= Y,./Ytr

100020 ≥= Y,.tr

The actual maximum annual LAI (LAI
max

) in year y is then:

( )yredpotmax,max LAILAILAI −= [Equation 4]

3. Climate Scenarios

A set of synthetic weather data was constructed on a half-hourly basis for the 20th and 21st

centuries from: (1) two years of measured meteorological data; and (2) outputs of a general
circulation model (GCM) for the period 1900–2100. Six meteorological variables were
measured every half-hour during 1997 and 1998 at the Brasschaat experimental forest: solar
radiation (W m-2), air temperature (°C), precipitation (mm day–1), relative humidity (kg kg–1),
wind speed (m s–1) and atmospheric pressure (Pa), as described by Kowalski et al. (1999).

We used simulated weather data from the Canadian Global Coupled Model (CGCM1)
(McFarlane et al. 1992; Flato et al. 2000) of the Canadian Center for Climate Modeling and
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Analysis (CCCMA). The CGCM1 model computes the atmospheric general circulation in
response to a standard increase in the concentration of atmospheric carbon dioxide (CO

2
)

over the 20th and 21st centuries. The radiative forcing of the climate system includes a
warming by greenhouse gases and a cooling by sulphate aerosols (Reader and Boer 1998;
Boer et al. 2000a,b). The equilibrium climate sensitivity of CGCM1, i.e., the global-mean
temperature response to a doubling of the effective CO

2
 concentration, is about 2.5°C.

Monthly results are available in a database maintained by the Data Distribution Center of the
Intergovernmental Panel on Climate Change (DDC-IPCC). The spatial resolution is 3.75° in
longitude and about 3.7° in latitude.

Monthly averages of CGCM1-simulated weather data were extracted for the grid cell
corresponding to the Brasschaat research site (51°18' N, 4°31' E). The downscaling was
conducted in a two-step approach. First, monthly GCM outputs were modified so that their
1997–1998 average value for each month was equal to that of the measured data. The
correction factors obtained for the period 1997–1998 were then applied to the entire period
1900–2100. This operation is necessary because grid-cell GCM outputs do not necessarily
correspond to local measurements conducted in a specific set of altitudinal and latitudinal
conditions within the grid cell.

The second step of the downscaling procedure consisted in adding the half-hourly variability to
the corrected GCM outputs. Simulated monthly averages for the 1900–2100 period were
compared to the corresponding month of the year of the 1997–1998 measured data. To each
month of the GCM simulations was ascribed the variability of the measured data which presented
the closest monthly average to that of the simulations. This process was conducted for each of the
six weather variables. The half-hourly measured data were then multiplied by the ratio between
the monthly averages of the corrected CGM outputs and the measured data. Because this
procedure potentially generates some non-realistic half-hourly values, we constrained the half-
hourly values to lie between the maximum and the minimum values of the measured data set for
the corresponding hour of all the days of the same month of the year.

In summary, the two-step downscaling procedure produced simulated weather data for the
1900–2100 period which presented: (1) monthly averages identical to that of the measured
weather data for the period of measurement; (2) half-hourly variability identical to that of the
measured data; and (3) half-hourly values constrained within observable limits.

The atmospheric CO
2
 concentration was set to 300 p.p.m.v. in 1900 (a mean value found in

the air enclosed between 1883 and 1925 in the ice core of Siple Station), to 355 p.p.m.v. in
1990 in accordance with measurements at various sites in the Northern Hemisphere (Boden et
al. 1994), and to 700 p.p.m.v. in 2100 based on scenario IS92a of the Bern model (Houghton
et al. 1995). The atmospheric CO

2
 concentration was assumed to increase exponentially

between these values.

4. Simulation Details

Simulations for the 20th century began in 1929, the planting year of the Brasschaat Scots
pines. Simulations for the 21st century began in the year 2000. Initial values for tree carbon
reservoirs were set to that of one-year-old saplings. Three stand thinning scenarios were
considered: (1) actual stand thinning (AST), estimated from the forest plot history; (2) a
constant annual rate of stand thinning (CST), with initial and final stand densities
corresponding to the AST scenario; and (3) no stand thinning (NST).

Stand thinning affects the three main CO
2
 fluxes in forest ecosystems: (1) decreased

photosynthesis (through a reduction in LAI); (2) decreased autotrophic respiration (through a
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reduction in standing biomass); and (3) increased heterotrophic respiration (through enhanced
litter production). To better understand how each of these three processes separately affects CO

2

sequestration, we ran three additional simulations based on the NST scenario combined with
information from the AST scenario. Firstly, for the last three years of the NST scenario, we set
the LAI to the value of the AST scenario for the corresponding years. This scenario, which we
named ‘low LAI’, isolates the effect of stand thinning on photosynthesis. Secondly, three years
prior to estimating annual NEE with the NST scenario, we set the wood biomass to that of the
AST scenario. This simulation run, which we named ‘low woody biomass’, isolates the effects of
stand thinning on autotrophic respiration. Thirdly, three years prior to estimating annual NEE
with the NST scenario, we set the amount of woody litter to that of the AST scenario. This
simulation run, which we named ‘high woody litter’, isolates the effects of stand thinning on
heterotrophic respiration through the modification of woody litter accumulation.

5. Results

5.1 Thinning effects under 20th century climate

Simulated LAI was substantially affected by the progressive decrease in stand density (Figure 2).
This effect became more pronounced as the stand grew older. While pre-commercial thinning
operations sharply reduced tree population in the first few years following planting, they had only
a limited impact on canopy LAI. Although stand density was reduced from 8000 trees ha–1 at
planting to 550 trees ha–1 at stand age 70, ASPECTS predicted that the standing stemwood
biomass of 70-year-old Scots pines was 180% of the total amount of stemwood removed through
successive thinning operations (Figure 3). The predicted total amount of stemwood produced
during the 70-year growth of the Scots pine forest is similar under the NST and AST scenarios.
Nevertheless, predicted stemwood C content of individual trees is 15 kg C without thinning vs.
125 kg C with thinning. The predicted stemwood C exported from the forest during the 70-year
growth was 3800 g C m-2. Although we considered in all our simulations that stemwood was
removed from the forest at stand thinning, the fate of this stemwood C is crucial for a proper
estimation of C fluxes in managed forests.

Figure 2. Stand density and simulated maximum annual LAI for the Brasschaat Scots pines from age 1
(1929) to age 70 (1999).
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Simulated stand thinning (AST) decreased gross primary productivity (GPP), net primary
productivity (NPP) and net ecosystem exchange (NEE), of the Scots pine forest compared to
the NST scenario (Table 1). NPP and NEE were decreased by 8% and 19%, respectively, so
that stand thinning had less impact on forest productivity than on the net exchange of CO

2

between the forest ecosystem and the atmosphere. Reduced LAI by thinning, considered
separately, decreased GPP by 16%, from 1870 to 1564 g C m–2yr–1 (Table 1). Predictably, this
decrease in GPP was similar to that obtained with the AST scenario. Reduced LAI by
thinning also affected NPP and NEE, which were decreased by 25% and 34%, respectively.
Therefore, NEE was the most flux most susceptible to reduced LAI by thinning. Reduction of
living woody biomass by thinning, considered separately, had little impact on GPP while
increasing NPP by 15% due to reduced autotrophic respiration (Table 1). NEE was increased
by 29%, from 299 to 385 g C m–2yr–1. Higher woody litter biomass due to thinning,
considered separately, modified neither GPP nor NPP, as the forest stand was not modified
(Table 1) but resulted in a 17% decrease of NEE, due to increased heterotrophic respiration
of woody litter.

In summary, thinning affected NEE in three ways: (1) it reduced LAI, which reduced
photosynthesis, decreasing NEE by 100 g C m–2yr–1; (2) it reduced living woody biomass,
which reduced autotrophic respiration, increasing NEE by about 90 g C m–2yr–1; and (3) it
increased woody litter, which increased heterotrophic respiration, decreasing NEE by 50 g C
m–2yr–1. The combined effect of thinning, therefore, was a reduction of NEE by about 60 g C
m–2yr–1 (Table 1, NST vs. AST).

The distribution of thinning operations throughout the life span of the stand affects the
simulated standing stemwood biomass. Standing stemwood C at age 70 was decreased by
11% under a constant annual 4% thinning rate (CST) as compared to the actual-thinning
scenario (Figure 4). This difference is attributable to the faster recovery rate of canopy LAI

Figure 3. Simulated cumulative stemwood production, standing biomass, and thinnings for the
Brasschaat Scots pines from age 1 (1929) to age 70 (1999). Results of the actual stand thinning
scenario (AST) are compared with those of the no stand thinning scenario (NST).
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following thinning for younger stands, as in the AST scenario, where most trees are removed
as saplings. Most important to C storage, the cumulative NEE was decreased by a similar
11% under the CST scenario as compared to the AST scenario (Figure 5). The heavy thinning
of low-biomass saplings with AST resulted in less litter production than with CST, translating
into lower levels of heterotrophic respiration with AST. These results suggest that, for an
identical number of trees removed from the forest, the timing of previous thinning operations
affects the total amount of C that a managed forest sequesters in any given year.

Table 1. The effects of 5 different stand thinning scenarios on simulated gross primary productivity
(GPP), net primary productivity (NPP) and net ecosystem exchange (NEE) at the Brasschaat forest
during 1997–1998. The scenarios are: (1) NST = no stand thinning; (2) AST = actual stand thinning;
(3) Low LAI = NST with LAI as in AST from 1996 to 1998; (4) Low woody biomass = NST with
woody tissue biomass as in AST from 1996 to 1998; and (5) high woody litter = NST with woody litter
biomass as in AST from 1996 to 1998. The three last scenarios isolate the effects of the AST scenario
on photosynthesis, autotrophic respiration, and heterotrophic respiration, respectively.

Scenario GPP NPP NEE
g C m–2yr–1

NST 1870 669 299
AST 1570 615 242
Low LAI 1564 503 199
Low woody biomass 1862 772 385
High woody litter 1870 669 249
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Figure 4. Stand density and simulated standing stemwood biomass for the Brasschaat Scots pines from
age 1 (1929) to age 70 (1999). Results of the actual stand thinning scenario (AST) are compared with
those of the constant stand thinning scenario (CST).”
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5.2 Impact of 21st century climate

The GPP of the Brasschaat Scots pines is predicted to increase under 21st century climate
(Figure 6A). Scots pines planted in 2000 will have an estimated 28% increase in GPP as
compared to those planted in 1929, when considering their growth between ages 55 and 70
yr. This effect is mostly attributable to the increase in atmospheric CO

2
 concentration (data

not shown). NPP will also increase, although the response will be less pronounced (Figure
6B). The inter-annual variability of the downscaled GCM weather simulations implies that for
a given stand age the NPP may be lower for trees planted in 2000 than in 1929. The
simulated NEE of Scots pines is substantially increased under 21st century climate until stand
age 50 (Figure 6C). Both 20th and 21st century simulations were conducted with the AST
scenario. After age 50, the severe thinning of the Scots pine stand resulted in a sharp decrease
in both 20th and 21st century NEE curves. In addition, NEE during the last 20 years of Scot
pine growth will be similar in the 20th and 21st centuries, provided that similar thinning
operations are conducted.

The NEE simulations with the CST scenario differed substantially from those conducted
with the AST scenario for both the 20th and 21st centuries (Figure 6C and Figure 7). On a
multi-year average, the NEE remained higher for 21st than for 20th century forests. Both
scenarios show a peak of NEE at about stand age 25, when the LAI approaches a plateau,
while respiring living biomass is not too large.

6. Discussion

Our ASPECTS simulations with downscaled GCM weather data suggest that GPP, NPP and
NEE are substantially modified by stand thinning (Table 1). This result suggests that the time
elapsed since the last thinning operation could have a critical effect on measured NEE.
Several studies have linked inter-annual variations in NEE to climate variability (Goulden et
al. 1996; Goldstein et al. 2000; Wilson and Baldocchi 2000). Nevertheless, little or no
attention has been given until now to stand thinning as a factor modifying annual NEE values

Figure 5. Simulated NEE for the Brasschaat Scots pines from age 1 (1929) to age 70 (1999). Results
of the actual stand thinning scenario (AST) are compared with those of the constant stand thinning
scenario (CST).
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Figure 6. Simulated GPP (A), NPP (B), and NEE (C) of Scots pines planted in 1929 (solid line) and
2000 (dotted line), and subjected to thinning operations identical to those conducted at Brasschaat from
1929 to 1999.
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(Rasse et al. 2001a). Our simulations suggest that stand thinning can generate fluctuations in
NEE of greater magnitude than that due to inter-annual climate variability (Figure 6C). The
NEE of a 68-year-old Scots pine forest, as managed in Brasschaat, would be similar in 2068
to that measured in 1997 due to the severe thinning operations conducted in the last 13 years
prior to measurement (Fig 6C). Hence, ASPECTS predicts that although NPP will be
consistently greater during the 21st than the 20th century, the NEE will be more variable
because: (1) enhanced GPP under 21st century climate will produce greater standing biomass,
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so that thinning will generate greater amounts of litter, resulting in larger fluctuations in NEE;
and (2) the inter-annual variability of the GCM-simulated climate increases towards the end
of the 21st century. These results have important consequences for the role of forests in
atmospheric CO

2
 sequestration: the thinning history of the stand is an important consideration

when it comes to accurately estimating C fluxes in managed forests.
NPP is modified by stand thinning, although to a lesser extent than NEE (Table 1, Figure

6B and 6C). The simulated reduction in NPP results from two opposite effects: (1) a decrease
in photosynthesis due to the reduction in LAI; and (2) a decrease in autotrophic respiration
due to the reduction in tree biomass (Table 1). The first effect being greater than the second,
ASPECTS predicts an overall reduction in NPP following stand thinning. Thinning-induced
reductions in forest productivity have been reported in several studies (Velazquez et al. 1992;
Egnell and Leijon 1997; West 1998). Our simulations suggest that early pre-commercial
thinning operations decrease stemwood productivity to a lesser extent than when conducted
later as the stand matures (Figure 4). These results translate directly into increased carbon
sequestration by forests that are heavily thinned at an early stage as compared to those that
are thinned later in their life cycle (Figure 5).

In conclusion, our simulations indicate that stand thinning needs to be taken into account
both for accurately simulating current NEE measurements and for predicting future NEE and
NPP under 21st century climate. Although the effects of stand thinning on tree growth have
been investigated for decades by foresters, there is a renewed need to examine thinning
effects on carbon fluxes in temperate forests.
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Abstract

The simple process-based forest production model 3-PG, developed by Landsberg and Waring
(1997), requires few parameter values and only readily available data as inputs. It works on
monthly time steps and the output variables it produces are those of interest to forest managers.
3-PG has been evaluated using data from experiments and commercial plantations in Australia
and New Zealand, the UK, the United States, South Africa, Sweden and Finland. The model
generates stem mass and volume, leaf area index, stem diameter and root mass. It can be fitted to
data sets that include some or all of these variables. When time series data are not available, 3-
PG can be adjusted to produce the values of variables measured only once. Calibration of the
model against a wide range of data has provided parameter values and information about model
performance in relation to a number of species at a range of sites. The central questions pertinent
to the performance of the model are: (1) the importance of an appropriate estimate of soil
fertility, which affects carbon allocation and the canopy quantum efficiency used in the model;
(2) the need for good estimates of soil water available in the root zone; (3) the importance of
Specific Leaf Area. Differences in the performance of species are largely determined by
responses to temperature. There is no strong evidence for species differences in carbon allocation
patterns but the significant differences that exist in litterfall rates affect the development of leaf
area index and hence radiation interception and biomass production. Differences between species
in their responses to fertility and to drought are probably important but there is little empirical
information available to evaluate these. Using the satellite-driven version of the model to
simulate forest growth and productivity over large areas has demonstrated very clearly the great
variability of forest plot data, and the need for methods of scaling up to appropriate average
values. 3-PG provides an excellent framework for eco-physiological research on forest growth
processes at levels below (more detailed) those at which this model is written.

Keywords: process-based, calibration, biomass, production, weather, site factors
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Introduction

The model called 3-PG (Physiological Principles Predicting Growth), developed by Landsberg
and Waring (1997), is a simple process-based model requiring few parameter values and only
readily available data as inputs. It is a generalised stand model (i.e. it is not site or species-
specific, but needs to be parameterised for individual species) applicable to plantations or even-
aged, relatively homogeneous forests, which was developed in a deliberate attempt to bridge the
gap between conventional, mensuration-based growth and yield models, and process-based
carbon balance models. The output variables it produces are those of interest to forest managers.

The model uses the principles that underlie earlier models such as FOREST-BGC (Running
and Coughlan 1988) and BIOMASS (McMurtrie et al. 1990). Like these it is based on the
calculation of radiation interception, canopy photosynthesis or Gross Primary Production
(GPP), estimation of net primary production (NPP) and the allocation of the resultant
carbohydrates to component parts of the trees. One of the major differences lies in the fact
that 3-PG uses a time step of a month, so that the descriptions of the biophysical processes
that contribute to and control forest growth are necessarily greatly simplified – the model
attempts to capture the essential features of these processes, consistent with more detailed
descriptions and knowledge about them. The other major difference lies in the carbohydrate
partitioning procedure, outlined below.

Since 3-PG is a conservation-of-mass model it provides a useful tool for carbon
sequestration calculations, including the amount of carbon that goes below ground. The
model can be precisely calibrated to above-ground stand growth, and various sub-models can
be independently tested. We argue that, since the simulation of above-ground growth – and
hence carbon sequestration – can be demonstrably accurate, the estimates provided of below-
ground sequestration are likely to be realistic, and certainly provide clearly-stated and
quantitative hypotheses about this process. Work with the model supports the contention that
it can provide estimates of site productivity (site index) from soil and climate data without the
need for measurements of tree growth on the sites. It is also a useful analytical tool that can
be used for exploring the consequences of drought, changes in management practices such as
thinning and the influence of varying soil fertility status. However, because of limitations in
our knowledge of the interactions between soil chemical characteristics and plant growth, the
model cannot be used to indicate the fertiliser that might be needed to achieve particular
growth rates and productivity levels. Also, because it uses a Fertility Rating rather than a
model of nitrogen mineralisation and uptake, 3-PG is as yet unable to provide assessments of
long-term impacts of management on nutrient availability and sustainable productivity (see
Cannell and Thornley and McMurtrie et al. 2001).

In this paper we provide a brief outline of the structure of 3-PG, which has been described
in detail elsewhere, some examples of calibration and sensitivity analyses, and
demonstrations of the performance of the model as a predictive tool at stand and regional
scales. We then consider those aspects of the model where the uncertainties are greatest and
where research should, perhaps, be focussed, and discuss the questions of species differences
and the possible value of this model in relation to carbon sequestration calculations.

Model Structure

Essentially, 3-PG consists of two sets of calculations: those that lead to biomass values, and
those that distribute biomass between various parts of the trees, and hence determine the
growth pattern of the stand.
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Inputs

The input data required by 3-PG are weather data, soil water holding capacity in the root zone
(θ, mm depth equivalent), initial stem number (n

st
), initial total stem (w

s
), foliage (w

f
) and root

(w
r
) mass (Mg ha–1), and an (index) value for soil nutrient status (the fertility rating, FR,

which takes values between 0 and 1). Parameter values needed are the constants (a
i
) and

coefficients (n
i
) of the allometric equations for leaf and stem masses in terms of diameter at

‘breast’ height (B) (w
i
 = a

i
 Bni ), specific leaf area (SLA, σ

f
), cardinal temperatures (see

below), litterfall rate, maximum stomatal conductance and, the most important, canopy
quantum efficiency. Monthly average weather data are usually used, but it is possible to
provide monthly data for each year of growth.

Biomass production

Biomass production is determined by radiation interception and carbon fixation by the
canopy. Photosynthetically active radiation (PAR, φ

p
) is calculated from global solar

radiation. Absorbed photosynthetically active radiation (APAR) is calculated using Beers
Law and (projected) stand leaf area index (L*). Gross Primary Productivity (GPP, P

G
) is

obtained by applying a canopy quantum efficiency (QE, α
c
) value to APAR. The actual value

of QE at any time is estimated by correcting the potential value for the effects of sub-optimal
nutrition (described in terms of a linear correction by FR), temperature, soil drought and
atmospheric vapour pressure deficit (which reduces stomatal conductance), and stand age.
The model also incorporates the effects of nutrition as part of the carbon allocation
procedure, which is based on allometric equations and includes (non-empirical) allocation to
foliage, so L* varies according to growing conditions.

Net Primary Productivity (NPP, P
N
) is calculated from a simple ratio of NPP to GPP (see

Waring et al. 1998; Malhi et al. 1999). The assumption of constancy in the ratio of NPP to
GPP is somewhat controversial. However, Dewar et al. (1998) presented a mechanistic model
which predicted that the ratio should be largely independent of environmental factors over
time scales of days to weeks, and a detailed analysis by Mäkelä and Valentine (2001) led
them to accept that, although they produced indirect evidence the NPP/GPP ratio declines
over the course of development of an even-aged forest stand, there is also increasing evidence
that there is little variation in the ratio among many even-aged stands. Mäkelä and Valentine
said that:

despite our scepticism (about the constancy of the ratio)… it would appear that the
assumption of a uniform value can be put to some good use… and may serve to get
physiologically-based models into broader use, particularly in simple management
applications.

Carbohydrate allocation

Allocation of carbohydrate to roots is determined by growing conditions; the proportion of
NPP allocated to roots increases if nutritional status and/or water relations are poor;
allocation to stems and foliage is on a single-tree basis, based on the ratio of the derivatives
of the allometric equations describing leaf and stem mass in terms of B. The procedure is
dynamic and self-regulating – it is not the same as calculating the masses of particular
components, such as foliage or stem mass, from allometric equations and using the ratio of
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the values to determine allocation. At the end of each time step the allometric equations are
inverted and stem diameters are calculated. Stand basal area and volume are obtained from
stem diameters and stem numbers. Initial tree populations are specified and changes in stem
populations calculated using the well-established –3/2 power law or specified thinning.

The time course of leaf mass, and hence L*, is strongly influenced by litterfall; high
litterfall rates can result in a gradual decline in canopy leaf mass if the rate of carbohydrate
allocation to foliage is not high enough to maintain L*. It is therefore important to use the
best available information about litterfall for the species of concern. We know that litterfall
rates (γ

F
) are strongly influenced by growing conditions and season: for example Linder et al.

(1987) found 8-fold variations, between months, in needle litterfall from Pinus radiata, with
drought stimulating massive needle fall, particularly from treatments that had been heavily
fertilised and developed large canopies; in loblolly pine, new foliage grows during the spring/
early summer period (March-June), and the foliage of the previous season starts to fall
towards the end of the summer, i.e. the average life of a foliage cohort is about 15 months
(Vose and Allen 1991; Hennessey et al. 1992). Leaf area depends on leaf mass and specific
leaf area (SLA, m2 kg–1). SLA may vary with growing conditions (Specht 1989), with tree age
(Sands and Landsberg 2001) and position of the leaves in canopies. Default values of 3.5–4
for broad-leaved species, and 6 for conifers are usually used in 3-PG. The influence of these
factors is explored in the next section.

Water balance

Water balance is calculated monthly, using the well-established, and biophysically rigourous,
Penman-Monteith equation. Boundary layer conductance, which is a large value in forests, is
taken as a constant. Stomatal – and hence, through L* – canopy conductance depends on a
maximum value which is modified by atmospheric vapour pressure deficit. Soil water storage
in the root zone may be an important factor in the water balance, and in determining site
productivity, particularly in areas subject to long dry periods (see later comment). Law et al.
(1999) evaluated the water balance sub-model in 3-PG and found that the model accurately
simulated soil water balance under Pinus ponderosa, over two years. The water balance
calculations have also been tested at other sites, among which results from plantations on
deep soil in Brazil, where neutron probe measurements were made for a number of years,
were excellent.1

Software for 3-PG, with supporting documentation (Sands 2000) is available free on the
internet (see Acknowledgements).

Calibration and Sensitivity Analysis

Calibration

If 3-PG is to be used to simulate the behaviour and responses of a particular species it should,
ideally, be calibrated against time series observations of stem mass, stem diameter and leaf
area index, with known stem populations. However, such data are seldom available in
forestry, and the model can be calibrated against stand volume alone, being constrained to

1 These data are commercial-in-confidence and not available for publication.
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produce ‘reasonable’ values, over time, of stand L* and stem diameters. Values have to be
selected for the stem allometric parameters, the cardinal temperatures that control growth,
litterfall and SLA, soil water holding capacity of the root zone and the fertility rating (FR).
The model also requires estimates of the fraction of above-ground growth that consists of
branches. Default or tabulated values are available for all of these; generally only the FR is
allowed to vary during calibration, on the grounds that the relationship between soil chemical
properties and the effects of fertility on tree growth is not well understood. Landsberg et al.
(2001) provide a detailed description of calibration procedures and they are also detailed in
the software package.

We present here two sets of data against which 3-PG has been calibrated, illustrating results
of the type commonly obtained where appropriate time series data are available.

Figures 1 and 2 show the curves produced by 3-PG after optimisation of the parameter values
against the data (see Table 1). This is done by hand fitting using an iterative procedure to
optimize parameter values. The procedure involves choosing an initial set of parameter values
and appropriate inputs, running the model with weather data for the sites, and information about
the soils, and comparing output with observed values. Parameter values are then adjusted to
improve the fit and the model re-run. Successive adjustments lead, in most cases to good fits
between observed and simulated variable values. A number of parameter values can be varied to
alter the output of the model, but normal procedure is to select the best values for the species in
question on the basis of information available, and to use standard default values for as many as
possible of the other parameters; if too much flexibility is allowed it becomes very difficult to
identify the factors that are determining growth and yield differences, little is learned and we
have little guidance about parameter values to use in the model when predictive calculations are

Figure 1. Calibration: time series showing the course of stem mass, stem diameter and leaf area index
(L*), from one treatment in a Eucalyptus grandis spacing trial in Swaziland. Points are measurements
and the lines are obtained in the course of calibrating 3-PG against the data. The aim is to optimise the
fit to all variables simultaneously.
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to be made. In most cases the values for the parameters of the stem mass/stem diameter
allometric equation are fixed on the basis of empirical data, but because of the non-linear nature
of the equations determining carbon allocation, and the fact that they are integrated over whole
rotations, it is sometimes necessary to adjust these values to get best fits with time series data
consisting of several variables, such as those in Figs 1 and 2.2

Tickle et al. (2001) tested 3-PG against conventional forest models applied to plots in 50
000 ha of natural forest, dominated by E. delegatensis in New South Wales (see Figure 3).
The data available, in this case, were standard stem diameter measurements in 22 plots,
ranging in age from 12 to 80 years. Stand volumes were estimated using established
relationships with height (site index) and stem number. Good quality information on soil
fertility and water holding capacity, and weather data, were acquired as part of the study.
There was no information about foliage mass or L*. All parameter values were set to the best
known (or estimated) default values for the species, except for the values of the foliage mass/
stem diameter equation, which were allowed to vary so that the model produced values, and
time course, of L* that corresponded to estimates and expert knowledge.

Parameter values were optimised (by calibration) for each of eight plots and the (single) set
of values that gave the best results for those plots (Table 1) was then applied to all plots,
giving the results shown in Figure 3. Note that the relationship between predicted and
measured stand biomass, while linear, with a high correlation coefficient (r2 = 0.91), is
somewhat biased. Departure from a 1:1 relationship arises because the best overall set of

Figure 2. Calibration: time series showing the course of stem mass, stem diameter and foliage mass
from the Irrigated x Liquid Fertilizer treatment of an ecophysiological experiment on Pinus radiata in
the ACT, Australia. The points are measurements and the lines are obtained in the course of calibrating
3-PG against the data. The aim is to optimise the fit to all variables simultaneously (data from Snowdon
and Benson 1992).
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2 Work is in progress to automate calibration of 3-PG using a non-linear curve-fitting package (PEST; see http://www.flowpath.com)
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parameter values is not necessarily the best for any individual plot; inevitably there is plot to
plot variation. If the concern is to produce a highly accurate prediction tool for the study area
the results can of course be corrected empirically, although this process provides no useful
insights into the reasons for the variation. On the basis of the (standard mensuration-type)
data available for these plots it was difficult to make progress beyond the point demonstrated
by the data in Figure 3. Tickle et al. (2001) could find no explanation for the two outlying
points. An alternative approach to analysing these data was adopted by Landsberg et al.
(2001), who fitted 3-PG to all the plot data together, treating them as a single time sequence.
This produced a slightly different set of parameter values from those given in Table 1 and the
results were not as good in terms of the relationship between observed and predicted values.

Table 1. Parameter/variable values used in 3-PG to calculate the curves in Figure 1 (Pinus radiata in
the Australian Capital Territory), Figure 2 (Eucalyptus grandis in a spacing trial in Swaziland) and
Figure 3 (E. delegatensis in a natural forest in New South Wales).

Parameter/variable P. radiata E. grandis E. delegatensis
(ACT, Aus.)  (Swaziland) (Bago-Maragle, NSW)

Avail. soil water (mm) 170 80 330
Fertility rating 0.9 0.2 0.4
Stem no. 746 1019 550
Max. litterfall rate/month 0.03 0.025 0.02
T

min
 (°C) 0 2 -2

T
opt

 (°C) 20 20 15
T

max
 (°C) 32 32 25

a
F

0.016 0.012 0.012
n

F
2.55 2.4 2.26

a
S

0.005 0.021 0.003
n

S
3.2 2.85 2.65

Figure 3. Stand volumes in a natural, Eucalyptus delegatensis-dominated forest in New South Wales,
predicted using 3-PG, plotted against measured volumes. The squares represent plots against which the
model was calibrated using a single set of parameter values that gave the best values for all calibration
plots. Diamonds are plots for which there was no calibration. Plots ranged in age from 16 to 80 years.
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Tickle et al. (2001) found that using GIS with layers for soil fertility and water holding
capacity, topography and climate, 3-PG was a better tool for extrapolation across the whole
50 000 ha forest than conventional growth and yield models. They also used 3-PG to estimate
site index, using the results to improve predictions with conventional models.

Sensitivity analysis

The results of some sensitivity analyses are presented in Table 2. They were produced using
parameter values and weather data for E. globulus plantations growing in Tasmania and illustrate
the effects of SLA and γ

F
 on maximum L*, litterfall mass in the year of maximum L*, and total

biomass production over a rotation. Increasing γ
F
 from 0.03 to 0.05 per month (equivalent to 36%

and 60% leaf loss per year) decreased maximum L* from 6.4 to 4.6, reduced the age at which
maximum L* was reached, and increased the total amount of litterfall, but only reduced total
biomass production by 4 tons ha–1. This was largely because, in this case, maximum L*
significantly exceeded 3: with an extinction coefficient of 0.5, Beers Law predicts that 95% of
short-wave radiation is intercepted by L*= 3, so higher values make little difference.

Table 2. Sensitivity analysis illustrating the effects of varying litterfall rates on maximum L*, the age
when maximum L* is reached, annual litterfall and total biomass production by a stand of Eucalyptus
globulus. The analysis was run using optimised SLA values and weather conditions typical of southern
Tasmania.

Litterfall Rate Maximum Age of Annual Total biomass
(fraction foliage L* maximum litterfall production at
mass month–1)  L* (yr) (tons ha–1) 15 years

(tons ha–1)

0.03 6.4 5 3.7 76.6
0.04 5.3 4 4.5 74.3
0.05 4.6 3 5.0 72.0

Table 3 illustrates the influence of stomatal conductance (g
s
) on annual NPP and water

transpired. In this case, since the influence of L* again becomes negligible when L*>3
(Kelliher et al. 1993, 1995), the effect is primarily through canopy conductance, which is
determined by g

s.max
. The effects on water use and NPP are in opposite directions, because

higher conductance and greater water use lead to longer periods of water stress, and hence
reduced NPP. The actual magnitude of the results is of only passing interest; it would vary
depending on the conditions pertaining for the analysis.

Table 3. Sensitivity analysis illustrating the effects of varying maximum stomatal conductance (g
s,max

)
on annual transpiration and NPP.

g
s,max 

(m s–1) Annual E
t 
(mm) Annual NPP (tons ha–1)

0.015 1149 45.2
0.020 1213 38.1
0.025 1236 31.7
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We have not provided illustrative data, but note here that stand productivity – in practice and as
predicted by 3-PG – is not sensitive to available soil water when rainfall is adequate; i.e. when
there is seldom a large difference between rainfall and (potential) transpiration. However, if an
area is subject to extended dry periods – for example the Pacific North West region of the USA,
with mild wet winters and hot dry summers, or the mediterranean rainfall regions, of which the
south-west of Western Australia is an example – then large soil water storage capacity can make
an enormous difference to the survival and growth of species (see Coops and Waring 2001).

The software package includes a facility for sensitivity analysis of the effects of any
parameter in terms of any specified output(s).

3-PG as a Predictive Tool

If a model is to be used as a predictive tool it must be driven by simple, readily available
input data and must provide reliable estimates of growth and yield using, as far as possible,
generic (species independent) parameter values. 3-PG fulfills these requirements: it is driven
by monthly average solar radiation values and the environmental modifiers are derived from
monthly average rainfall, temperature and humidity data. The default parameter values are
surprisingly stable across species. Landsberg et al. (2001) have recently evaluated the
performance of 3-PG in relation to about 50 data sets from plantations and commercial
forests around the world. They concluded that:

there are no consistent differences in allometric parameter values for different species
derived from fitting 3-PG to experimental or forest plot observation data. This does not
necessarily mean that species differences do not exist but rather that, if they do, they are
overwhelmed by differences caused by climate, soil conditions and cultural or management
practices, such as initial stem populations and factors such as weed control in the early
growth stages. The lack of clear differences in carbon allocation patterns between species is
consistent with the analysis of Ter-Mikaelian and Korzukhin (1997), who established the
allometric equations for 63 north American tree species. Cannell (1989) analysed dry matter
partitioning between stem wood and foliage for a number of coniferous species in Japan,
England, the USA, Australia and New Zealand and concluded that after canopy closure the
proportion allocated to wood is more or less constant.

With the exception of rainfall, values for the weather variables required by 3-PG can all be
estimated with acceptable accuracy using methods outlined by (for example) Thornton and
Running (1999) and Coops et al. (2000).

The other requirement for the use of a model as a predictive tool is that it must be able to
simulate accurately the growth patterns of stands for which it has been calibrated. This has
been demonstrated in a number of cases (see Landsberg et al. 2001). This does not prove that
the model can be safely extrapolated, but it gives confidence that all the essential features of
the system have been accounted for. Testing ‘blind’, i.e. using the model with parameter
values obtained by calibration against a particular species to predict the performance of that
species at other locations, without calibration, is difficult because inadequate or inappropriate
specification of site variables may lead to lack of coincidence between model output and
observation, which may be erroneously attributed to model error. However, Sands and
Landsberg (2001) have tested 3-PG thoroughly in this way, using data for E. globulus from
Western Australia and Tasmania. They concluded that:

3-PG …provides a useful tool for modelling the time-course of stand development of
intensively managed, even-aged E. globulus, given observed initial biomass data and
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stocking. Further, it can be used as a predictive tool for modelling long-term stand
development when initialised with typical seedling stock at age 0, even though early
stand development is quite sensitive to assumed initial biomass data.

The results shown in Figure 3 indicate that a similar conclusion can be drawn for natural
forests, even if initial stand conditions are not well known. Waring (2000) successfully
simulated the growth of Sitka spruce at a number of sites in Britain, while Coops et al.
(1998a,b, 2001) have demonstrated for a range of forest types that the simplified version of 3-
PG, driven by satellite observations, can provide accurate predictions of growth, in terms of
NPP, across large areas.

To use 3-PG as a predictive tool, appropriate values of the cardinal temperatures that
control growth, litterfall and SLA, appropriate for the species under consideration, have to be
selected, as well as values for the stem allometric parameters. Soil water holding capacity of
the root zone and the fertility rating (FR) will be estimated from local knowledge and
information available about soils and stem populations specified. It is important to ensure that
the time course of L*, and the maximum values reached, conform to values that can be
regarded as ‘reasonable’ in relation to the water balance of the region. These can be estimated
from native vegetation: leaf area will tend to values limited by available water (Specht 1972;
Grier and Running 1977); i.e. evergreen vegetation will tend to adjust its L* in response to
long-term water availability. Plantations may reach higher L* than native vegetation because
of cultural factors (fertilisation, reduction of competition from other vegetation), and young
plantations may violate the condition of hydrologic equilibrium if they either do not occupy a
site in a hydrological sense, or they initially mine soil water stored in the profile prior to their
establishment (Hatton et al. 1998). Adjustment of the time course of L* is simply done by
adjusting the foliage allometric parameters (see ‘Instruction’ sheet in the software package).
The model can then be used to estimate probable growth rates under average weather
conditions, wood production and carbon sequestration by stands in the area. The influence of
abnormal conditions such as drought can be assessed by providing monthly weather data for
each year of growth, which allows assessment of the affect of droughts that occurred, or
droughts simulated by reducing rainfall by chosen amounts for any period of interest.

Because canopy quantum efficiency is linearly linked to fertility (within constraints),
changes in FR will lead to significant changes in biomass production by 3-PG. Despite
more than a century of research, our knowledge at the process level of the way soil
chemistry affects tree growth is poor; the use of a fertility index in the model is an explicit
recognition of this, and indicates that research may need to be focussed in this area, with
scientists perhaps using approaches different to those used in the past. One possibility is
the use of 3-PG as a heuristic tool – the model could be calibrated against stands on soils
of different fertility, for which there is a great deal of information available, and the
relationships between soil chemistry and the FR values necessary for accurate description
of stand growth, analysed. Meanwhile, varying FR will give indications of probable
responses to varying fertility, but will not provide quantitative guidance about the
fertilisation needs of plantations.

Discussion

Enough evidence has been accrued to argue that 3-PG is a robust and reliable model at stand
level. It can be used to assess the productivity, on sites where they have not been grown, of
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species adapted to the region under consideration; the greatest uncertainty, in most cases, is likely
to be the value of FR and hence the value of canopy quantum efficiency to use. Fertility Ratings
can be estimated from chemical analysis and the knowledge of people familiar with the soils of
the region, but we need continued research focussed on this aspect of process-based modelling.
Soil moisture holding capacity may be important in some cases but can generally be estimated to
acceptable levels of accuracy by a combination of soil sampling and examination, combined with
the use of pedo-transfer functions to estimate water-holding capacity. 3-PG is not sensitive to soil
water storage in areas where serious seasonal droughts are infrequent.

We noted earlier that, because 3-PG is a conservation-of-mass model, it can be used to
make estimates of below-ground carbon sequestration. The code includes a root turnover
parameter, although this makes no difference to the performance of the model – there are no
feedbacks. If this term is set to zero the accumulated root mass provides some insight into the
amount of biomass that is respired below-ground; clearly this is a very difficult value to test,
and the actual values depend on other assumptions in the model – such as the question of the
NPP/GPP ratio. Nevertheless, the model used in this way provides a clearly-stated,
quantitative hypotheses that can, in principle at least, be tested.

From the management point of view 3-PG, calibrated for the species and region, provides
a useful tool for investigating the probable influence of drought, the effects of thinning and
questions such as the effects of plantations on local hydrology. From the ecological point of
view the model can be used to evaluate the factors limiting tree growth at different times in
different locations (see Coops and Waring 2001). Investigation of the importance, and
influence, of SLA across ecological gradients may be rewarding.

3-PG provides a useful framework for research. It is a ‘top-down’ model, which has the
disadvantage that the environmental modifiers are defined at spatial and temporal scales that
differ greatly from those at which environmental variables influence NPP (foliage, seconds,
hours…). It is therefore useful to explore the relationships between detailed, short-term,
‘bottom up’ models, supported by detailed measurements, and the performance of robust,
simplified models, such as 3-PG, designed for operational use. Such investigations may
include detailed modelling of radiation interception by canopies, canopy photosynthesis
calculations using a model such as the Farquhar et al. (1980) model and, possibly, detailed
modelling and measurements of respiration. A good example of this type of study is provided
by Raulier et al. (2000). A model of this type can also perform an important function in
providing a means of assessing the importance and limitations of particular processes in
relation to growth and the performance of a system (stand) as a whole.
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Abstract

The development of sustainable forest management practices must take into account the
possible impacts of climate change at the spatial scales of interest to forest managers. We
used a simple process-based model of pine forest growth (GRAECO) to examine sub-
regional climate change impacts on the water balance, carbon balance and primary
productivity of maritime pine in south-west France. GRAECO simulates the energy, water
and carbon balances and growth of a monospecific, even-aged stand of maritime pine,
represented by soil, understorey and tree layers. Standard and modified (2 x CO

2
) climate

data were generated by the ARPEGE model of METEO-France over a 10-year period across
a 60 x 60 km grid in south-west France. GRAECO simulated the behaviour of two stand age
classes (8 and 18 yr) at seven representative grid points chosen to cover the range of climate
conditions within this region. Under 2 x CO

2
, ARPEGE predicted a mean temperature

increase of 2°C, an increase in summer values of air vapour pressure deficit, and a shift in the
seasonal distribution of precipitation from summer and autumn to winter. Regardless of age
class, GRAECO then predicted a decrease in gross and net primary productivity at 6 grid
points, but a slight increase in growth at the most coastal (and humid) site. The negative
growth responses reflected increases in air and soil moisture deficits. Increased water stress
more than offset the relatively small CO

2
-fertilisation effect, which was limited by the poor

nutrient status of the sites considered. We conclude that sub-regional (≈10 km) variations in
the impact of climate change on forest growth may be significant, and should be considered
in assessments of sustainable forest management.

Keywords: climate change, forest water balance, carbon balance, pine forest, Pinus
pinaster, process-model, sub-regional impact study, south-west France
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Introduction

Predicting climate change impacts on terrestrial ecosystems remains an important
challenge from political, management and scientific perspectives. In particular, an
understanding of climate change impacts on the carbon sink strength of forests is crucial
for predicting the future course of atmospheric CO

2
 concentration. Climate change itself

has been studied mainly from a regional to global perspective. However, assessing climate
change impacts on forest growth may also require a more local perspective. For example,
the development of sustainable forest management practices must take into account the
possible impacts of climate change at the spatial scales of interest to forest managers (i.e.
sub-regional).

Studies of regional-scale climate change impacts may not be sufficient for this purpose.
The European LTEEF-2 project (Long-Term Effects of Climate Change and Atmospheric
CO

2
 Increase on European Forests) provided a regional overview of expected growth

responses for different species and site conditions, predicting, for example, that forest
productivity would increase in boreal, northern Altlantic and northern continental regions,
and decrease in Mediterranean regions. However, local climate and growth variations may be
of the same order of magnitude as the changes predicted over the next 50 years. The question
of local variations in climate and site conditions remains unexplored.

The objective of the present study is to assess the impacts of climate change within the one
million hectare Landes de Gascogne pine forest in south-west France. This region is
characterised by significant gradients in temperature and humidity from the west (Atlantic
coast) to eastern limit (200 km inland), and in rainfall from north (western central plain of
France) to south (Pyrenean foothills). Average annual wood production depends strongly on
water availability.

We used a process-based forest growth model (GRAECO) to simulate the behaviour of
maritime pine (Pinus pinaster) forest over a 10-yr period, under standard and modified (2 x
CO

2
) climates generated by the ARPEGE climate model of METEO-France at a 60 x 60 km

resolution. We present results for the impacts of climate change on the main ecosystem fluxes
and tree growth at seven representative grid points covering the climate range of the Landes
de Gascogne Forest.

Regional Characteristics

The region studied was the Landes de Gascogne Forest, covering one million hectares in
south-west France (Figure 1). The forest consists mainly of even-aged stands of maritime
pine growing on shallow sandy soils with a low nutrient content (pH 4), and a water
storage capacity between 100 and 120 mm. Mean annual temperature varies from 10 to
15oC (from west to east) and annual rainfall from 750 to 1250 mm yr–1 (from north
to south).

Precipitation is not uniform over the year, autumn and winter receiving two thirds of the
annual total. The Penman evapotranspiration rate exceeds rainfall by 120–150 mm in
summer and autumn, and consequently most of the forest region experiences 2–6 weeks of
soil drought in 3 out of every 4 years (Choisnel et al. 1987). Mean annual wood production
(estimated from measurements by the National Forest Inventory in 1998) is close to 12
m3ha–1yr–1, but varies from 6 to 14 m3ha–1yr–1 depending on the water table level and
annual rainfall.
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Figure 1. The Landes de Gascogne Forest (shaded area), showing the location of the seven grid points
(⊗ ) considered in the modelling analysis.
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Climate Scenarios

The ARPEGE-IFS climate model of Météo-France was used to generate two 10-yr series of
climate data (for atmospheric CO

2
 concentrations of 354 and 708 p.p.m.v.,

 
respectively) with a

spatial resolution of 60 x 60 km over the French national territory. The ARPEGE climate
predictions were calculated using the sea surface temperature predicted by the coupled ocean-
atmosphere model HadCM2 of the UK Hadley Centre. The climate data were extracted from
long-term simulations (1860–2100) at each CO

2
 concentration, assuming the ocean response time

to regional climate anomalies is longer than a decade (Déqué et al. 1998). The sulfate aerosol
concentration followed the observed trend from 1860 to 1990 and was fixed at its 1990 level
thereafter. The concentrations of other greenhouse gases were increased at the same rate as CO

2

(+1% yr–1). The soil-vegetation scheme used in ARPEGE is the surface model ISBA (Noilhan
and Planton 1989), which provided lower boundary conditions to temperature and moisture.

ARPEGE generated 6-hourly values of temperature and relative humidity, and daily sums
of precipitation and global radiation. These data were disaggregated to hourly values using
empirical equations derived from a 10-yr series of hourly data measured at Merignac
Meteorological Station (Pluviaud 2000) (cf. Rasse et al. 2001).

Figure 2 summarises the main climate trends predicted under the standard and modified
climate scenarios, for two grid points corresponding respectively to the most western (170)
and most eastern (123) points of the Landes Forest area (Figure 1). Doubling CO

2
 resulted in

a drier climate over the entire region, the greatest impact being in the continental part. The
three main climate responses induced by doubling CO

2
 were: (i) increased temperature; (ii)

increased atmospheric water vapour saturation deficit; and (iii) a shift in the seasonal rainfall
distribution from summer and autumn to winter and spring. The increases in temperature and
air humidity deficit were most pronounced in summer and autumn. The seasonal difference in
precipitation between winter and summer was enhanced under the 2 x CO

2
 scenario: winter

and spring precipitation increased by 25%, while summer and autumn precipitation was
reduced, the annual total remaining largely unchanged. In summary, the seasonal imbalance in
rainfall and evaporative demand was amplified under 2 x CO

2
.

Overview of GRAECO

The forest model GRAECO (GRowth and Allocation based on ECOphysiological processes)
simulates the energy, water and carbon fluxes through the soil-vegetation-atmosphere
continuum, represented as one soil layer and two vegetation layers (understorey and trees).
The model has a time step of 1 hr and predicts carbon allocation and tree growth. The driving
variables are standard meteorological variables. GRAECO does not describe nutrient cycling
processes and therefore does not predict nutritional limitations on growth (see Cannell and
Thornley 2001; Corbeels et al. 2001; McMurtrie et al. 2001).

Canopy processes are described using conventional sub-models such as Rutter’s rainfall
interception model, the Penman-Monteith equation, and the Jarvis-Stewart stomatal
conductance model (Loustau et al. 1992; Granier and Loustau 1994). Light interception is
calculated using Beer-Lambert’s law with the diffuse and direct components treated
separately (Berbigier and Bonnefond 1995). Gross primary productivity is calculated from
the light absorbed by each layer and a light-use efficiency coefficient (LUE, ε) which depends
on environmental variables and stand age (Porté 1999; Porté and Loustau 2001). In
particular, the CO

2
 impact on pine LUE is derived from the results of the MAESTRO model

for a Pinus radiata stand on poor nutrient conditions (Medlyn 1996).
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Heterotrophic respiration is calculated using a Q
10

 temperature dependence and a seasonally-
varying reference rate. Autotrophic maintenace respiration is calculated according to Bosc et
al. (in preparation). Growth respiration is a constant fraction (0.28) of the carbon
incorporated into new biomass. The net gain in canopy carbon is distributed among
individual trees in proportion to their contribution to stand leaf area index (LAI).

Carbon allocation and tree growth are described following the 3-PG approach (Landsberg
and Waring 1997; see also Landsberg et al. 2001). Net carbon gain per tree is partitioned
between above- and below-ground parts according to a water stress index (i.e. the ratio
between potential to actual transpiration of pines), and then further allocated to six above-
ground and two below-ground biomass compartments in accordance with allometric
relationships established by Porté et al. (2000, 2001) for three maritime pine stands (aged 7,
27 and 32 yr, respectively).

Figure 2. Average annual courses of minimum and maximum air temperatures (upper graphs), daily
maximum water vapour saturation deficit (middle graphs), and monthly precipitation (lower graphs) at
two grid points of the Landes de Gascogne, predicted by the ARPEGE climate model under standard (1
x CO

2
) and modified (2 x CO

2
) climate scenarios. Numbers next to the temperature curves indicate the

corresponding temperature anomaly.
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Model Parameterisation

We used site parameters (e.g. soil depth, hydraulic conductivity – pressure head relationship,
water table minimum and maximum depths) measured at Le Bray (Figure 1). Le Bray is part
of the Fluxnet network and CarboEuroflux projects, and was a pilot site for calibrating
process models in the LTEEF-1 and LTEEF-2 projects. In this study, we ran model
simulations for two age classes, 8–17 yr and 18–27 yr, for which GRAECO was initialised
with stand data measured at Le Bray at ages 8 and 18 yr, respectively. These data included the
LAI of each foliage cohort, and the biomass, circumference and height of each tree within a
one hectare area.

Model Evaluation

The sub-models for canopy conductance, transpiration and rainfall interception have been
evaluated previously (Loustau et al. 1992; Granier et Loustau 1994). GRAECO has also been
evaluated in terms of the predicted long-term water-use efficiency, using carbon isotope
analysis of the cellulose of early and late wood (Porté and Loustau 2001). Figures 3–5
illustrate how GRAECO predicts with reasonable accuracy the observed short- and long-term
trends in carbon fluxes, soil moisture (including duration of soil water deficits) and stem
growth, without systematic bias or drift, even if some discrepancies are observed (e.g. in
diurnal CO

2
 fluxes). These results were obtained with data collected at one site only. Further

evaluation over a range of site and climate conditions is necessary.

Model Responses to Climate Change

Evapotranspiration

Despite the significantly enhanced seasonal imbalance in evaporative demand and
precipitation under 2 x CO

2
, the annual transpiration rate of trees, averaged over the 10-yr

simulation period, was reduced by only 40 mm yr–1 while understorey transpiration was
increased by 20 mm yr–1. The annual sum of soil moisture deficit was increased by 10%. At
the central grid point (147) the maximum annual rates of tree transpiration were remarkably
similar under the two climate scenarios (Figure 6). This behaviour is consistent with the
sensitivity analysis of the water balance sub-model by Loustau et al. (1998), which showed
that tree stomatal closure under increased air humidity deficit (VPD) forces the transpiration
rate to plateau when VPD exceeds 2 kPa. Moreover, the stomatal conductance of pine species
is generally insensitive to CO

2 
concentration

 
(Picon et al. 1996).

The annual course of soil water deficit, averaged over the 10-yr simulation period, showed
a slight increase in summer and autumn under the 2 x CO

2
 scenario. The duration of the water

stress period – when soil water deficit exceeded 70% – was not significantly extended. In
summer, however, soil water was depleted more severely while in winter, the larger excess in
rainfall led to increased soil drainage (data not shown). This pattern showed little spatial or
age variation. Stomatal responses to air and soil humidity deficits ensured that annual
stand evapotranspiration was relatively conservative, consistent with the hypothesis of
Roberts (1983).
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Figure 6. Time course of pine and understorey transpiration (E, lower graphs), gross primary
productivity and ecosystem respiration (GPP and RE, middle graphs), and soil moisture deficit (∆SMD,
upper graph) from ages 18 yr (in 1988) to 27 yr (in 1998) at grid point 147, predicted by GRAECO
under standard (1 x CO

2
) and modified (2 x CO

2
) climate scenarios.
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Carbon fluxes

Annual GPP decreased slightly under the 2 x CO
2
 climate scenario (Figure 6), while the

ecosystem respiration flux (RE) was largely unaffected. The direct CO
2
-fertilisation effect on

GPP was largely offset by increased air and soil humidity deficits. The CO
2
-fertilisation effect

was expressed mainly through a 10% increase in LUE, derived from a modelling analysis of
radiata pine growing in comparable site conditions (Medlyn 1996).

The climate change impact on ecosystem respiration reflects two opposing effects.
Increased temperature tends to enhance both heterotrophic and autotrophic respiration.
Conversely, slower growth and lower standing biomass lead to a reduction in growth and
maintenance respiration per unit ground area. Table 1 shows that the combined climate and
CO

2
 effects resulted in a reduction in NEP at six grid points of the Landes Region, and a

slight increase for point 170, the latter being closest to the coast where climate change
impacts on soil moisture are negligible.

Table 1. Annual mean NEP, final biomass (Wa, above-ground; Wr, below-ground), mean DBH and
height predicted by GRAECO for the standard (1 x CO

2
) climate scenario (with % change under

2 x CO
2
) at the seven grid points. Ten-year simulations were run for two age classes, 8–17 yr (a) and

18–27 yr (b).

Grid point NEP Wa Wr DBH Height
[gC m–2yr–1] [kg m–2] [kg m–2] [cm] [m]

(a)

123 360 –10% 13.8 –11% 7.1 –4% 15.7 –6% 10.9 –1%
124 362 –4% 14.0 –5% 7.3 –– 15.8 –3% 10.9 –1%
146 425 –8% 15.8 –10% 7.9 –3% 16.8 –6% 11.1 –1%
147 370 –6% 14.0 –8% 7.1 –1% 15.8 –7% 10.9 –1%
148 329 –– 12.9 –2% 6.7 +3% 15.2 –1% 10.8 ––
169 385 –6% 14.4 –8% 7.4 –2% 16.0 –4% 11.0 –1%
170 360 +3% 13.5 –– 6.9 +5% 15.5 –– 10.9 ––

(b)

123 416 –9% 21.8 –6% 10.7 –3% 24.8 –3% 16.7 –1%
124 418 –3% 21.8 –3% 10.8 –– 24.9 –2% 16.7 ––
146 492 –9% 24.1 –7% 11.6 –3% 26.2 –4% 16.9 –1%
147 428 –6% 22.1 –5% 10.8 –1% 25.0 –3% 16.8 ––
148 381 +2% 20.8 –– 10.2 +2% 24.2 –– 16.6 ––
169 445 –8% 22.5 –6% 11.1 –2% 25.3 –3% 16.8 ––
170 417 +1% 21.8 –1% 10.7 +2% 24.8 –– 16.7 ––

LAI and tree growth

Figure 7 shows that, under the 2 x CO
2
 scenario, the predicted maximum needle area was lower

(by 23% after 10 yr) and was reached sooner. The tendency of needle area to plateau between
ages 8 and 18 yr is explained by the model through a shift in C allocation from shoot to root with
increasing age and water stress. Climate change effects on the water stress index (the ratio
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between actual and potential tree transpiration) were the main cause underlying the reduction in
needle area. Understorey LAI was not affected. It is noteworthy that the annual peak in pine and
understorey LAI was advanced by 5 to 10 days, due to higher temperature. The reduction in LAI
led to decreased absorption of incident visible radiation by the pine canopy.

Figure 7. Time course of pine leaf area (all-sided) and understorey leaf area index (projected),
predicted by GRAECO under standard (1 x CO

2
) and modified (2 x CO

2
) climate scenarios.
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Above-ground tree biomass changed by between –11 and +3 % depending on stand age and
site location (Table 1). The growth decrease was greatest for the most continental sites and
younger stands. Carbon allocation shifted to below-ground components, and below-ground
biomass was relatively unaffected, changing by between –4 and + 5 %.

Figure 8 shows the sensitivity of annual NEP and root-shoot ratio (Wr/Wa) to selected climate
variables, as determined from a 1-yr simulation of an 8-yr-old stand. Both NEP and Wr/Wa were
more sensitive to air humidity deficit than to rainfall or CO

2
 concentration, underlining the

importance of air and soil water conditions to ecosystem functioning for this species and region.

Figure 8. Relative responses of annual net ecosystem C exchange (NEP, left) and root-shoot ratio (Wr/
Wa, right) to atmospheric water vapour saturation deficit (VPD), rainfall (R) and atmospheric CO

2

concentration. The responses were obtained from a one year simulation of an 8-yr-old stand at grid
point 147. The baseline climate data were taken from an average year of the 1 x CO

2
 climate scenario.
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Discussion

The simulations presented here represent a consistent and coherent description of the impact
of one possible climate change scenario over the next 50 years, rather than firm predictions of
what will happen. For example, the standard (1 x CO

2
) climate scenario generated by

ARPEGE is drier than the observed climate (Pluviaud 2000), and the present study does not
represent the full range of humidity conditions observed in the region’s coastal zone.

Further caveats concern GRAECO’s representation of soil-vegetation-atmosphere
feedbacks. Pine forest functioning is largely controlled by water availability at the
atmospheric and soil boundaries of the ecosystem (i.e. by air and soil humidity deficits).
Conversely, air and soil moisture contents both depend on canopy fluxes at the stand and
regional scales (Jarvis and McNaughton 1986). The feedbacks acting across the ecosystem
boundaries may play a major role in the Landes de Gascogne Forest, which extends over one
million hectares of flat ground with low soil water retention capacity. At the stand level, the
soil water feedback is incorporated in GRAECO (for which closure of the water balance has
been checked). However, regional changes in drainage flow, hydrology and related impacts
on the water table have not been accounted for. Similarly, the atmospheric feedback was not
fully accounted for, the surface parameterisation of ARPEGE-IFS (the ISBA model) having
been kept constant between the two scenarios. The results presented here should therefore be
regarded as an assessment of only the direct, primary impacts of climate change on ecosystem
water and carbon balances.

Despite these shortcomings, some useful insights have been gained. The empirical
functions used to model the soil-vegetation-atmosphere water fluxes appear to capture the
conservative hydraulic behaviour of the forest (Loustau et al. 1998). Pine transpiration and
soil water balance are relatively unaffected by climate change, despite the dramatic changes
in evaporative demand and rainfall distribution involved. It has been proposed that the
functional significance of such hydraulic homeostasis lies in the requirement to maintain tree
water potentials above the threshold for runaway cavitation (Tyree and Sperry 1988; Jones
and Sutherland 1991; Cochard et al. 1996). This interpretation merits further study. As for
most pine species studied so far, the stomata of Pinus pinaster do not respond to CO

2

concentration (Picon et al. 1996). CO
2
-induced alleviation of drought effects is therefore

limited in the Landes de Gascogne Forest. In our simulations, the homeostatic behaviour of
the water balance under climate change is mainly due to a water stress induced reduction in
pine LAI and stomatal conductance. Understorey LAI is not affected.

The reduction in pine LAI and stomatal conductance decreased absorbed PAR and LUE,
thereby reducing GPP. The increase in air and soil temperatures enhanced both autotrophic
and heterotrophic respiration rates, but this was offset by the reduction in standing biomass,
so that ecosystem respiration was relatively unaffected. Acclimation of soil respiration to
temperature (Giardina and Ryan 2000) was not implemented in the model, although soil
respiration was constrained by the annual carbon input to the soil (Janssens et al. 2001).
These changes in GPP and RE led to reductions in NEP and tree growth at five of the seven
grid points, with commercial wood production being further reduced by the drought-induced
increase in below-ground C allocation.

The results presented here depend on the model assumptions and parameter values used,
including their sensitivity to climate change. With these caveats in mind, it is worth noting the
predicted importance of increased air humidity deficit, which dominates the direct impact of
CO

2
. Another important and novel result of our study is that climate change impacts on NEP

and tree growth could change sign over distances of only tens of kilometres.
We conclude that sub-regional variations in the impact of climate change on forest

behaviour may be significant, and should be considered when horizontal gradients in climate
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are important (e.g. due to coastal edges or surface discontinuities such as mountains and
lakes). Such local variations may be of crucial concern to forest managers in their assessment
of sustainable forest management practices. In regions where future water availability may be
significantly reduced over a rotation, by climate change or other factors, the opportunity for
optimising forest water-use by management should be considered. The effects of drought on
forest might be alleviated by management practices such as increasing soil water storage
capacity through deep ploughing, or reducing evapotranspiration through thinning control of
LAI, understorey removal and soil mulching.
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Abstract

Recent experimental studies have revealed that soil carbon (C) and nitrogen (N) content and
soil N availability often decrease following conversion of improved pasture to Pinus radiata
plantations. These decreases are a concern partly because of possible negative consequences
for future forest productivity. This issue is investigated by applying the G’DAY model of C
and N cycling in pasture and forest ecosystems to simulate the replacement of improved,
legume-rich pasture by P. radiata plantations that are grown over several harvest cycles at a
site in New Zealand. We illustrate how process models can be used for analysing constraints
on long-term productivity by performing a sensitivity analysis of G’DAY’s response to
various rates of N removal. We find that simulated productivity declines over successive
forest rotations and that the rate of decline is sensitive to N losses through wood harvesting,
slash removal, and N leakage (i.e. leaching and soil gaseous emission). However, even when
these N losses are zero, forest productivity still declines because of a gradual depletion of
labile soil N reserves. Simulations are used to evaluate the mean annual increment (MAI) in
wood volume over forty 30-year forest rotations. With harvesting only, simulated MAI
declines from 44 m3 ha–1yr–1 in the first rotation to 18 m3 ha–1yr–1 in the fortieth rotation. The
simulated MAI in the fortieth rotation is 13 m3 ha–1yr–1 with harvesting and leakage, and
11 m3 ha–1yr–1 with harvesting, leakage and 50% slash removal. If the simulation with
harvesting only is modified so N removed in harvests is replaced by an equivalent fertiliser
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addition, MAI is 28 m3 ha–1yr–1 in the fortieth rotation. Results presented are tentative and
should be regarded with caution until the model is fully tested.

Keywords: forest productivity, G’DAY, harvesting, modelling, nitrogen cycling, Pinus
radiata, sustainability

Introduction

Many empirical studies have quantified nitrogen (N) losses by forest ecosystems through
harvesting, fire, leaching and soil gaseous emissions (see McMurtrie and Dewar 1997 and
references therein). The link between ecosystem N losses and forest productivity has been
modelled by Dewar and McMurtrie (1996) (henceforth referred to as DM) who developed a
theoretical analysis of long-term changes in forest growth. DM considered a forest stand
undergoing a repeated cycle with forest harvests followed by slash fires and re-planting. Over
successive rotations, soil N supply may change due to N losses, but in the long-term the
system approaches a steady state at which total N losses equal N inputs over a rotation. DM
defined sustainable yield as the stemwood productivity achieved at that steady state, and
developed a graphical method – together with some simplifying assumptions (see below) –
for evaluating the steady state, based on the balance between N inputs and outputs. Using this
method sustainable yield can be evaluated without the need to run simulations of forest
growth over multiple rotations.

The simplicity of DM’s steady-state analysis makes it a powerful tool for quantifying
sustainability. However, it has the limitation that the analysis does not determine the timescale for
achieving steady state. Another limitation to DM’s analysis is their grossly simplified N model
which consists of a single equation balancing cumulative N inputs over a rotation versus N
removals in harvests and fire at the end of the rotation, and which does not simulate soil
processes. In particular, one of their simplifying assumptions (referred to above) is that the total
N supply rate (net mineralisation + external inputs) to the soil inorganic N pool is constant within
each rotation, which may have important consequences for the rotation-averaged N loss rate.

This paper aims to overcome these two limitations to DM by running simulations over several
forest rotations of a fully coupled model of C and N dynamics in plant and soil (G’DAY, Comins
and McMurtrie 1993). We apply G’DAY to a 30-year-old stand of Pinus radiata planted onto
grazed hill pasture at the Glenlean forest site near Masterton, New Zealand. The transition from
pasture to P. radiata is a major land-use change in New Zealand, occurring at a rate of tens of
thousands of hectares per year (Ford-Robertson 1997). Recently, several empirical studies have
been undertaken to investigate changes in soil properties under this transition. Most of these
studies, summarised in Table 1, found that soil carbon (C) and nitrogen (N) contents were lower
and soil C:N ratios were higher under pine than pasture (Halliday et al. 2002). Other studies have
measured lower levels of soil net N mineralisation and soil inorganic N under mature pine stands
than pasture, though both may be elevated in the early stages of stand development (Nambiar
1996; Parfitt et al. 1997; Halliday et al. 2002). These decreases raise the question of whether the
high productivity achieved by first rotation P. radiata stands planted on improved pasture will be
maintained in subsequent rotations.

G’DAY has previously been applied to the Glenlean site by Halliday et al. (2002) who
investigated changes in N cycling, litter quantity and quality as mechanisms for altered soil C and
N following pasture-to-pine land-use change. In this paper G’DAY is used to simulate the
transition from pasture to pine followed by a series of forest rotations with stands harvested at
age 30 years and then re-established. Changes in simulated productivity over successive forest



Modelling Long-Term Changes in Forest Productivity and Soil Nitrogen Supply…    61

rotations are compared with changes in soil N availability and results are related to DM’s
framework for quantifying sustainable productivity. The paper is structured as follows. We begin
with a summary of DM’s framework followed by an overview of the G’DAY model, and a
description of how it was applied to P. radiata growing at the Glenlean site. Then we present
results from simulations over multiple rotations of forest response to different rates of N removal
in harvesting, leaching, soil gaseous emission and residue management.

DM’s Theoretical Framework for Quantifying Sustainability

DM developed a simple graphical analysis for quantifying the long-term sustainable productivity
of managed forests. Their model takes account of the balance between N inputs (from fertilisers,
atmospheric deposition and biological fixation) and N removals in wood harvesting, end-of-

Table 1. Published results on changes in total soil C and N after conversion of pasture or grassland to
P. radiata plantation. Total C is a measure of total organic C (excluding roots), while total N is a
measure of both organic and mineral N. Percentage changes are expressed as pine relative to pasture. It
should be noted however that many of these studies sampled soils to a depth of 10cm or less (modified
from Halliday et al. 2002).

Source Location Details of Soil Change Change Change in
pine site depth in soil C in soil N soil C:N

(cm) ratio

Giddens 10 sites 13–30 yrs, 10 –42 to –77% to –14% to
et al. 1997 in NZ 100–500 stems +21% +9% +154%

ha–1

Halliday Glenlean 30 yrs, 30 –1% –39% +51%
et al. site, 350 stems
2002 Masterton, ha–1

NZ

Parfitt Palmerston 20-yr-old stand, 20 –26% –31% +6%
et al. North, NZ 250 stems ha–1

1997

Perrott Tikitere, 19-yr-old 7.5 –35 to Not Not
et al. NZ stands, –22% measured measured
1999 50–400 stems

ha–1

Ross Puruki, NZ 19-yr-old 20 –29% –38% +11%
et al. stand,
1999 1000 stems

ha–1

Scott NZ Data from 30, 50 –37 to Not Not
et al. national –16% measured measured
1999 databases and

4 detailed
site studies

Yeates Glendu 12-yr-old stand, 5 –24% –30% +9%
and Forest, NZ 1230 stems
Saggar ha–1

1998
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rotation slash burns and ‘leakage’ (i.e. leaching and soil gaseous emissions). They assumed that
external inputs of N from fertiliser additions, fixation and deposition occur at constant rates, and
that a repeated management cycle is imposed consisting of harvesting at maximum mean annual
stem volume increment (MAI), followed by slash burning and re-establishment. Over successive
rotations, a nutrient feedback operates whereby depletion of site N reserves over one rotation
leads to decreased stemwood productivity, and hence decreased N losses in harvesting and slash
fires, in the next rotation. Eventually, this feedback leads to a steady state at which, cumulative N
losses over a rotation equal cumulative N inputs from fixation and deposition. The growth
constraint shown in Figure 1 represents the positive relationship between maximum MAI and
plant-available N supply (S) in any given rotation, where S includes external inputs (assumed
constant) and net mineralisation (which varies between successive rotations).

Figure 1. Illustration of DM’s graphical analysis of long-term sustainable yield, showing the growth
constraint (dashes) and N-balance constraints (solid lines). Sustainable yield is given by the height of
the intersection between the two constraint curves.

The steady-state N balance constraint, also shown in Figure 1, is the relationship between
steady-state values of maximum MAI and S, imposed by the condition that over a rotation N
inputs to the system equal N losses associated with removal of harvested wood, leaching,
gaseous emissions and slash burns:

Ninput = Nloss or A T
h = H + F + L or A =

hT

H
+

hT

F
+

hT

L
(1)

where: A is mean annual N addition rate from deposition and fixation (assuming no fertiliser
input), T

h
 is rotation length (yrs), H is N loss in harvested stemwood, F is N loss due to fires

that consume slash residue, and L is N loss due to leaching and gaseous emissions.
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Because mean annual N removal in harvested wood (H/T
h
) is proportional to MAI, while

mean annual N losses from slash burning (F/T
h
) and leakage (L/T

h
) depend positively on N

supply (S), Equation (1) (with A fixed) imposes a negative relationship between MAI and S,
as illustrated by the N-balance constraint curves shown in Figure 1.

The system must be on the growth constraint curve in every rotation. If the system is above
the steady-state N balance constraint curve, then N outputs exceed N inputs, so that N supply
and maximum MAI will decrease over successive rotations with the system moving down the
growth constraint curve. Below the N balance constraint curve, the opposite occurs, so that N
supply and maximum MAI increase. In either case, the system moves along the growth
constraint curve towards the steady state given by the intersection where both constraints are
satisfied. Sustainable wood yield is then defined as the maximum MAI at the steady state.
Using this approach, DM quantified the sustainable yield of managed Eucalyptus stands
under various scenarios of N loss; sustainable yield was 30 m3 ha–1yr–1 if harvesting was the
only N loss, 24 m3 ha–1yr–1 with N losses from harvesting and leakage, 15 m3 ha–1yr–1 with N
losses from harvesting and slash burning, and 13 m3 ha–1yr–1 with the combined effects of
harvesting, fire and leakage (Figure 1). These results suggest that slash burning may represent
a greater limitation to sustainable productivity than harvesting or N leakage.

The G’DAY Plant Soil Model

Overview of G’DAY

G’DAY is an ecosystem model describing C and N dynamics in plant and soil. It is based on
the plant production models of McMurtrie (1991) and Medlyn et al. (2000) and the soil
carbon and nutrient cycling model, CENTURY (Parton et al. 1987, 1993). The version of
G’DAY used here does not include the revised decomposition sub-model (MIT) described in
this volume by Corbeels et al. (2001).

Figure 2. Pools and fluxes of C and N in the G’DAY model. In pasture simulations the wood pool is
omitted.
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The pools and fluxes of C and N in G’DAY are shown in Figure 2. The forest version of
G’DAY has three biomass pools: foliage, wood (which includes stems, branches and coarse
roots) and fine roots. The pasture version has only foliage and root pools. The model has four
litter pools (surface structural, surface metabolic, soil structural and soil metabolic) and three
soil organic matter pools (active, slow and passive SOM). Processes represented include net
primary production (NPP), allocation, tissue senescence, litter and soil decomposition, plant
N uptake, N retranslocation, net soil N mineralisation, N input by biological fixation and
atmospheric deposition, and N loss by leaching and soil gaseous emission. Brief descriptions
of each process, and differences between the pasture and pine versions of G’DAY are
presented in Table 2. For further details see Comins and McMurtrie (1993), Medlyn et al.
(2000) and McMurtrie et al. (2001). G’DAY can be run either with a daily time step using
daily meteorological data, or with constant mean-annual weather. In this paper constant
mean-annual weather was used under the assumption that the Glenlean site (described below)
is not water-limited.

Parameterisation of G’DAY for the Glenlean site

Parameterisation of G’DAY was based on paired pasture and pine sites located at the Glenlean
site in Ngaumu State Forest, near Masterton in the North Island of New Zealand (41° 01' S, 175°
57' E, elevation 320 m). The mean annual rainfall is 1347 mm, and mean annual temperature is
11.4°C. The pine site was a 30-year-old first rotation stand of P. radiata with a stocking density
of approximately 350 stems ha–1. The pasture site, located on adjacent farmland, was grazed by
sheep and cattle at a rate of approximately 10 animals ha–1, and fertilised. The sites were on
similar silt loam soils. Further details are in Halliday et al. (2002).

G’DAY was parameterised for the pasture and pine systems using measurements at the
Glenlean site and published data (Halliday et al. 2002). Many parameter values for the pine
system were derived from recent applications of G’DAY to P. radiata growing at the ‘Biology of
Forest Growth’ site near Canberra, Australia (Medlyn et al. 2000). Assumed rates of N uptake
and leakage from the inorganic N pool under pasture, defined in Table 2, were λ

u
 = 10.2 yr–1 and

λ
loss

 = 1.8 yr–1, respectively, so that 15% of mineralised N was lost through leakage with 85%
taken up by plants. A comprehensive list of parameter values is in Halliday et al. (2002). Because
values of several parameters are uncertain, results presented below are tentative and should be
regarded as illustrations of G’DAY’s qualitative response to N removals.

Simulations of Forest Response to Different Rates of N Loss

To simulate the transition from pasture to pine, the model was initially parameterised for
pasture and run to equilibrium. At time zero, the pasture was replaced by pine trees, grazing
ceased and N-fixation was reduced from the high rate under pasture (150 kg N ha–1 yr–1) to
zero. Pasture biomass was transferred to above- and below-ground structural and metabolic
pools based on C:N ratio and lignin content using equations in Parton et al. (1993). Rates of
N uptake and leakage from the inorganic N pool were altered, as specified below. The lignin
contents of foliage and root litter were modified gradually over the first four years under pine
to reflect a gradual increase in litter lignin content under forest (Halliday et al. 2002). At age
30 years trees were harvested with the C and N contents of wood removed from the site.

We simulated the following four scenarios for N losses: (1) harvesting only (with zero N
leakage under forest and with harvest residue retained on site); (2) harvesting + leakage;
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(3) harvesting + leakage + 50% harvest residue removed from site; and (4) harvesting + N
fertiliser addition equal to N removed in harvest. Scenarios 1 to 3 represent increasing N
losses, and (4) is the simulation with least N loss. Simulations were conducted over 40
rotations with a fixed rotation length of 30 years with the same management practices
imposed after each harvest.

Table 2. Description of processes in G’DAY for pine and pasture. Full details are given in Comins and
McMurtrie (1993), Medlyn et al. (2000), McMurtrie et al. (2000, 2001) and Halliday et al. (2002).

Process Description in the model

Light interception Beer’s law, with separation into sun-lit and shaded foliage for forest, but not
for pasture.

Leaf photosynthesis Rectangular hyperbolic function of light and leaf [N], responsive to
of pine temperature and [CO

2
] (Medlyn et al., 2000).

Gross primary Derived by integration down the canopy with N declining exponentially
productivity (Medlyn et al., 2000), giving GPP analytically as a function of total foliage C,
(GPP) of pine mean foliage N:C ratio, incident photosynthetically active radiation (PAR),

mean growing season temperature.

GPP of grass Proportional to absorbed PAR with light use efficiency a function of mean
foliage N:C ratio (McMurtrie 1991).

Respiration Fixed fraction of GPP.

Net primary GPP minus Respiration.
production (NPP)

C allocation Fixed fractions of NPP allocated to foliage, wood, fine roots.

Senescence Constant litterfall rates for foliage, wood and fine roots.

Plant N:C ratios Fine root and wood N:C ratios proportional to foliage N:C.

Litter N:C ratios Foliage and fine root litter N:C proportional to live foliage N:C.

N retranslocation Fixed fractions of leaf, non-structural wood and fine root N.

Soil C dynamics Derived from the CENTURY model (Parton et al. 1987, 1993).
Decomposition rates responsive to temperature and soil moisture.

Soil N dynamics Rate of change of soil inorganic N (N
inorg

) = gross N mineralisation + N
fixation - N immobilisation - plant N uptake - N loss through leaching and
soil gaseous emission.

Soil N:C ratios N:C ratios of substrate entering active, slow and passive SOM represented as
linearly increasing functions of N

inorg
.

N input Constant inputs from atmospheric deposition and symbiotic fixation.

N loss Leaching and soil gaseous emission rates proportional to soil inorganic
N pool (N loss = λ

loss
 * N

inorg
).

N uptake Proportional to soil inorganic N pool (N uptake = λ
u
 * N

inorg
).

Grazing Consumption rate proportional to foliage biomass.

C loss in grazing Fixed fraction of C eaten, remainder entering soil as faeces.

N input to soil Fixed fraction of N eaten, as either faeces with constant N:C ratio or urine.
by grazers
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Scenario 1: harvesting only

For Scenario 1 we assumed that all wood C and N were removed in harvests with no other N
loss under forest (λ

loss
= 0, Table 2). The rate of N uptake was proportional to soil inorganic N

(Table 2), with λ
u
 assumed to increase from 1.8 yr–1 at the start of each forest rotation to a

maximum rate of 11.4 yr–1 after 10 years (Halliday et al. 2002), reflecting expansion of the
root system. After each harvest the residue (leaves and fine roots) was transferred to the
above- and below-ground litter pools based on the C:N ratio and lignin content of residue.
Simulated wood volume, N uptake rate (N

uptake
) and soil inorganic N (N

inorg
) were highest in

the first rotation (Figure 3a). Values of N
inorg

 were elevated early in the first rotation when net
N mineralisation, enhanced as a residual effect of the highly fertile pasture system, exceeded
tree uptake requirements, and when soil N immobilisation was reduced because of low tree
litter input. Within 10 years, however, N

inorg
 declined to below its value under pasture. The

reduced N
inorg

 under pine was a consequence of the increased quantity of low quality
(structural) litter, resulting in reduced N input to soil and increased N immobilisation during
its decomposition (Halliday et al. 2002). Reduced N

inorg
 in turn caused an increase in C:N

ratio of substrate entering slow SOM, resulting in a gradual decline in slow soil N (Figure
3b), and hence in the rotation-averaged N uptake rate (Figure 3c). Both MAI and N uptake
were highest in the first rotation and declined over subsequent rotations (represented by the
sequence of points 1, 2… 40 progressing down and to the left in Figure 3c, analogous to
DM). Simulated MAI declined rapidly at first (from 44 to 23 m3 ha–1yr–1 in rotations 1 and 10,
respectively), then gradually until it reached a steady-state value of 17 m3 ha–1yr–1.

Scenarios 2–4: effects of different rates of N removal

Under Scenario 2 (harvesting + N leakage) the rate of N loss through leakage (λ
loss

) was set to
0.6 yr–1 under forest. Thus, N loss represented 25% of N loss + N uptake at the start of each
forest rotation, declining to 5% at age 10 years. Simulated N losses were large early in the
first rotation because of elevated levels of soil inorganic N (as illustrated in Figure 3a for
Scenario 1). Consequently, in the first rotation under Scenario 2 tree N uptake and MAI were
considerably lower than under Scenario 1, as illustrated in Figure 4. Between rotations 1 and
10, MAI declined from 39 to 19 m3

 
ha–1

 
yr–1, and was 13 m3

 
ha–1

 
yr–1 at steady state.

Scenario 3 considered the effect of removing 50% of slash C and N at harvest. The slash
removed included both shoot biomass and above-ground litter. Under this scenario MAI was 39
and 18 m3

 
ha–1

 
yr–1 in the first and tenth rotations, respectively, and 11 m3

 
ha–1

 
yr–1 at steady state.

Simulations of Scenarios 1 to 3 indicate that the decline of MAI over successive rotations
is sensitive to N losses in harvests, leaching/gaseous emissions and slash removal. This
conclusion raises the question of whether MAI will still decline if there is no ecosystem N
loss. This question was investigated by Scenario 4 where wood C and N were removed in
harvests (as under Scenario 1), but N was added to the soil inorganic N pool so there was no
net N loss. Under this scenario simulated MAI declined from 44 m3 ha–1yr–1 in the first
rotation to 28 m3

 
ha–1

 
yr–1 after 10 rotations (Figure 4). This simulation illustrates that MAI

declined even when ecosystem N loss was zero. Here MAI declined because of a gradual
decrease in soil N supply due to a shift of soil N reserves from relatively available soil
organic matter (active and slow SOM) to passive SOM. The decline of slow soil N, illustrated
in Figure 3b for Scenario 1, occurred primarily because the slow pool’s C:N ratio, which
depends on N

inorg
 (Parton et al. 1993; Halliday et al. 2002; McMurtrie et al. 2001), increased

from 12 to 30 during the simulation. The simulation for Scenario 4 (Figure 4) shows a
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Figure 3. Simulation with harvesting only (Scenario 1). The simulation was initiated by running the
pasture to equilibrium. At time zero pasture was replaced by a pine stand. (a) Simulated soil inorganic
N (thick solid line), plant N uptake (thin solid line) and wood volume (dashes) for pasture (time –20 to
0) and three 30-year forest rotations (time 0 to 90 years). (b) Simulated mean annual wood volume
increment (MAI) at harvest and slow soil N content over 40 rotations. (c) The relationship between
MAI and rotation-averaged plant N uptake over rotations 1 to 40.
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gradual increase in MAI after 700 years. This increase occurred under Scenario 4 because N
input was constant whereas output was zero, so that the system accumulated N and did not
achieve DM’s steady state where input equals output.

Discussion

DM’s analysis provides a theoretical framework for assessing constraints on sustainable
forest yield. Our simulations are complementary to DM’s analysis in several respects. Our
simulated changes in forest productivity over successive rotations are related to changes in
plant N uptake, and follow a unique curve (Figure 3c) that is analogous to DM’s growth
constraint between MAI and soil N supply (Figure 1). We find that the same unique
relationship between MAI and plant N uptake over successive rotations applies to Scenarios
2 to 4 (results not shown). Under Scenarios 2 and 3 with higher N loss than Scenario 1, MAI
and N uptake decreased more rapidly over successive rotations and values reached at steady
state were lower than indicated in Figure 3c for Scenario 1 (cf. DM’s analysis illustrated in
Figure 1). As predicted by DM, MAI approached a steady state under Scenarios 1 to 3, but
not under Scenario 4 where the system accumulated N and did not achieve N balance.

There are several differences however between our results and DM’s. One difference arises
because DM considered only N inputs and losses at the ecosystem level, whereas G’DAY
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Figure 4. Simulated mean annual increment (MAI) in wood volume over forty 30-year forest rotations
under Scenarios 1 to 4: 1 – Harvesting only; 2 – Harvesting + N leakage; 3 – Harvesting + N leakage +
removal of 50% of slash C and N; 4 – Harvesting + N addition equal to N removed in each harvest.
Simulated MAIs in the fortieth rotation were 18, 13, 11 and 28 m3 ha–1yr–1, respectively for Scenarios
1 to 4.
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also considers internal N fluxes into and out of soil pools. Thus, at the steady state achieved
by G’DAY under Scenarios 1 to 3 (Figure 4), rotation-averaged N fluxes into and out of each
soil pool were equal, in addition to the balance between inputs and losses at the ecosystem
level. In our simulations of G’DAY changes in N fluxes into and out of slow-turnover soil
pools have a considerable impact on soil N supply and hence on forest productivity, as shown
previously by McMurtrie et al. (2000, 2001) in the context of modelling carbon sequestration
by forests. The effect is illustrated by Scenario 4 (Figure 4) where productivity declined over
several rotations although ecosystem N loss was zero. This result identifies a limitation to
DM’s analysis of sustainability, and indicates that a plant-soil model with internal C and N
cycles is required for predicting changes in productivity over multiple rotations. A further
illustration of DM’s shortcomings is that the soil N supply and plant N uptake rates simulated
by G’DAY varied considerably within each rotation (Figure 3a), whereas DM’s theoretical
analysis assumes that soil N supply rate is constant within each rotation, which may lead to an
underestimate of N loss rates, especially for sites where leakage is important.

Consequently, another difference between DM and our work concerns the importance of N
leakage through leaching and soil gaseous emissions. DM assumed that only 5% of N not
taken up by trees is lost through leakage, reflecting their focus on Eucalyptus growing on
relatively dry sites. Consequently, DM predicted that sustainable MAI was relatively
insensitive to N leakage. In contrast, we predict a large effect of N leakage on MAI (compare
Scenarios 1 and 2, Figure 4). Our prediction applies to forest planted onto N-rich pastures
where N leakage was high during the first forest rotation, leading to greatly reduced MAI
after the first rotation (Figure 4). In subsequent rotations, although N leakage under Scenario
2 was reduced, the difference in MAI between Scenarios 1 and 2 was maintained (Figure 4).
For this site, a dynamic treatment of N supply and leakage within each rotation is appropriate.

A useful insight from our modelling concerns the timescale for the decline of MAI, which
was outside the scope of DM’s analysis. Simulations in Figures 3 and 4 suggest that several
centuries are required for stabilisation of MAI.

DM derived an equation for the N addition required to sustain a given yield. A similar analysis
could be performed by running simulations of G’DAY. This analysis would be based on the
relationship between MAI and N supply illustrated in Figure 3c. This relationship could be used
to determine the N supply corresponding to a given yield, and model runs could be used to
determine the N addition required in each rotation to achieve that rate of N supply.

The simulations presented here illustrate the model’s sensitivity to different levels of N
removal. The scenarios considered are not intended to closely represent specific management
practices. For instance, our harvesting strategy, involving removal of all wood C and N
including branches, stems and structural roots, is extreme. Because our scenarios are
unrealistic and because the model has not been fully tested, our prediction of declining
productivity over time should be viewed as tentative. Before specific model predictions can
be taken seriously, the model requires further testing and development, including application
of G’DAY to long-term experiments where carbon and nutrient cycles are monitored over
multiple rotations. We also emphasise that processes not considered in this paper may be
important in explaining changes in productivity over successive rotations.

Our simulations do, however, illustrate a potential role for plant-soil models as tools for
analysing constraints on long-term forest productivity, and for evaluating the benefits of
management strategies (e.g. residue retention, fertilisation, legume inter-cropping) that may
maintain site N capital. Furthermore, our evidence of the G’DAY model’s sensitivity to
altered N fluxes into and out of SOM pools highlights the importance of research into
mechanisms of soil N release and immobilisation, leading to improved representations of
these mechanisms in plant-soil models (Aber et al. 1998; Corbeels et al. 2001; McMurtrie
et al. 2001).
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Abstract

An updated version of G’DAY (Generic Decomposition and Yield model) with a revised
decomposition model is presented. The model is parameterised to simulate C and N dynamics of
Eucalyptus globulus stands. Data from litterbag studies on decomposition of eucalypt slash
residues are used to calibrate the decomposition model. The whole system model is tested against
data on tree growth and N mineralisation of a first-rotation E. globulus stand in southwestern
Australia. The model is then used to assess the effect of harvest residue management on soil
nitrogen supply during growth of second rotation eucalypt. The model simulations suggest that
retention of harvest residues will favour enhanced soil N supply for the next rotation. The risk of
N stress due to N immobilisation only occurs during the first year of the second rotation.

Keywords: Eucalyptus globulus, G’DAY, model, N mineralisation, slash residues

Introduction

Hardwood plantation forestry is a new and expanding agro-industry in southwestern
Australia. Eucalyptus globulus is the most commonly planted species, primarily because of
its high potential growth rate, short rotation length (10 years) and favourable pulpwood
properties (Cromer 1996). More than 150 000 ha had been established by 1999 and the
planting rate currently exceeds 25 000 ha yr–1 (National Forest Inventory 2000). The region,
which has a Mediterranean climate with hot dry summers and cool wet winters, has a high
productivity potential because of favourable temperatures and abundant incident radiation. In
this climate, growth rates in summer depend largely on the capacity of the soil to store water
from winter rains (Hingston et al. 1998).
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The natural fertility of soils in the southwest region of Australia is generally low. However,
plantations are usually established on agricultural land, where soil fertility has been elevated
by past annual fertiliser application and enrichment of soil organic matter by legume-based
pasture systems. Sustaining plantation productivity in the future will largely depend on
maintaining current levels of soil fertility in subsequent rotations. Evidence from agricultural
research (e.g. Glendining and Powlson 1995) further suggests that soil fertility declines
markedly within a period of some years where fertiliser application ceases or becomes less
frequent. There is also a concern that high harvest intensity with increased exports of
nutrients from the site will exacerbate soil fertility decline and result in a long-term reduction
in site-productivity (see also McMurtrie et al. 2001).

Management of slash residues during the inter-rotation period following stand harvest is
one option for manipulating site fertility. The effect of harvest residue management on soil N
supply is a key issue, because N often limits productivity of fast growing E. globulus
plantations (Judd et al. 1996). Experimentation dealing with this topic is limited, in part
because of the time scale (several years) over which the effects may occur. Process-based
models provide an alternative approach and can be valuable tools in analysing the medium to
long-term consequences of alternative strategies for managing harvest residues in plantations.
To be valuable, the model must include all relevant processes and driving variables that affect
tree growth and N cycling (Ryan et al. 1996)

In this paper, we report on the use of an updated version of G’DAY (Generic
Decomposition And Yield model) (Comins and McMurtrie 1993) to simulate tree growth and
N cycling in E. globulus plantations, and analyse the impact of alternative harvest residue
management options on N supply.

Model Formulation

G’DAY is a process-based model of plant-soil ecosystems, that was initially developed to
simulate C and N dynamics in forest ecosystems (Comins and McMurtrie 1993) (Figure 1).

The original version of G’DAY links the plant production model of McMurtrie and Wolf
(1983) to the decomposition sub-model of CENTURY (Parton et al. 1993). The plant production
model essentially assumes that net primary production (NPP) is proportional to intercepted
photosynthetically active radiation (PAR) with modifications for soil water and nitrogen stress. It
comprises four tree biomass pools: foliage, branches (plus coarse roots), wood (stems) and fine
roots. These pools receive C through allocation of NPP, and N through allocation of N uptake
and retranslocation. The CENTURY model simulates decomposition of plant litter and soil
organic matter (SOM) (Parton et al. 1993). It was originally developed to investigate SOM
dynamics in grassland ecosystems (Parton et al. 1987), but has more recently been extended for
simulating soil C dynamics of tropical (Vitousek et al. 1994) and boreal (Peng et al. 1998)
forests. This model has been extensively validated and applied in regional and global studies.

In the present study, we modified the decomposition model to better describe the
interactions between C and N dynamics in decomposing litter. This adapted version simulates
N mineralisation-immobilisation turnover (MIT) and is in part based on the structure of the
soil C and N transformation model NCSOIL (Molina et al. 1983).

The MIT model consists of seven organic matter pools: four litter pools and three SOM
pools. The C litter pools defined in the model are: (1) metabolic, easily decomposable
compounds; (2) cellulosic compounds (not encrusted in lignin); (3) ligno-cellulosic
compounds; and (4) a woody litter pool (Figure 2a). Each litter pool is divided into a surface
and sub-surface component. Decomposing foliar and fine root litter is characterised in the
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Figure 1. Pools and fluxes of C and N in the G’DAY model. P
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(modified from Comins and McMurtrie 1993).
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model by the first three litter pools, while branch, stem and coarse root litter enter the woody
litter pool. The SOM pools in the model are: (1) a microbial biomass pool; (2) a ‘slow’ pool
of humified products of microbial debris and lignin; and (3) a ‘passive’ or stable humus pool.
The microbial biomass is split up into two components: (1) a labile component; and (2) a
stable, more recalcitrant component (Molina et al. 1983).

Nitrogen is associated with each C pool (except the cellulosic pool). The N pools
(including mineral N) and mineralisation-immobilisation fluxes are shown in Figure 2b. It is
further assumed that the N:C ratio of the ligno-cellulosic pool equals the N:C ratio of the
overall litter, the remainder of N in the litter is allocated to the metabolic pool.

The model assumes that from all litter and SOM pools a fraction (Y
i
, the microbial efficiency

factor) enters the microbial biomass pool. The fraction of the C leaving the microbial biomass
pool, that re-enters this pool, simulates microbial succession. Another fraction from the microbial
biomass is transferred to the slow pool and simulates the synthesis of hydrolysable humified
microbial products. The fraction of decomposed C from the slow pool, which is incorporated in
the passive pool, simulates the stabilisation of microbial products. Fractions not incorporated in
SOM pools are lost as CO

2
. The model further assumes that lignin (in the ligno-cellulosic pools)

is not used for microbial growth and is transferred directly into the slow pool, when ligno-
cellulosic material is decomposed. The C decomposition rate of each litter and SOM pool is
calculated according to first-order rate kinetics:

NLTWiii rrrrSkD *****=

where: D
i
 is decomposition rate of pool i, S is substrate C in litter or SOM pool i , k

i
 is the

intrinsic decomposition rate constant of pool i, and r
W

, r
T
, r

L
 and r

N
 are rate modifiers

representing, respectively, effects of moisture, temperature, lignin and nitrogen.
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The moisture factor is calculated as a function of cumulative potential soil evaporation for
surface litter, and as a function of moisture content of the surface soil in case of belowground
litter and SOM. The response function of Kirschbaum (2000) was used to describe the effect
of temperature on the decomposition rate of each of the C pools. The decomposition rate of
structural compounds is further modified as a function of its lignin content (see Parton et al.
1987), with lower decomposition rates at higher lignin contents. Decomposition flows in the
model are also controlled by availability of inorganic N, based on the assumption that

Figure 2. (a) C flow diagram and (b) N mineralisation (solid lines) and immobilisation (dotted lines)
for the modified decomposition model of G’DAY.
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microbial growth is limited, when N is limiting. The rate modifier r
N
 is determined by

balancing N availability against N needs of the decomposing microbial biomass (see below).
The model assumes that all organic N in substrate passes first through the inorganic N

component before microorganisms can assimilate it and that there is thus no direct
assimilation of organic N. The change of N in litter or SOM pools is given by the difference
between N input (calculated from C flux multiplied by the N:C ratio of the donor pool) and N
output. Inorganic N availability is further determined by N inputs from biological fixation,
fertilisation or atmospheric deposition and by N outputs via plant uptake and losses through
gaseous emission or leaching.

Microbial growth incorporates N from the soil inorganic N pool based on the assumed N:C
ratio of the microbial biomass (n

bio
). The rate of gross immobilisation by microbial biomass

(IM
bio

) is:

∑= bioiibio DYIM ν**

where: Y
i
 is the microbial efficiency factor for litter or SOM pool i.

The N:C ratio of the decomposing microbial biomass is a function of the metabolic fraction
of the incoming litter, with higher values for litter with a larger fraction of metabolic
compounds. Following Parton et al. (1993), the N:C ratio of newly formed slow SOM is
simply set to the N:C ratio of new microbial biomass plus a constant increment. The N:C ratio
of newly formed passive SOM is set equal to the N:C ratio of the microbial pool. By
imposing a N:C ratio for new slow SOM, the transfer of lignin to the slow pool during
decomposition of the ligno-cellulosic pool results in inorganic N being immobilised in the
slow pool to sustain its N:C ratio. This simulates the abiotic or chemical incorporation of
inorganic N in humic materials.

Balancing microbial N demand or immobilisation (IM
bio

) against inorganic N availability
(INA) will determine whether the system is N limited. INA is represented as inorganic N content
multiplied by the rate of microbial N uptake. In the model, we differentiate between above- and
belowground N cycling in calculating this balance. We assume that all inorganic N is available
for microorganisms decomposing below-ground litter, whereas only a fraction of the actual soil
inorganic N is available for microorganisms decomposing above-ground litter.

If INA ³ IM
bio

, indicating no N limitation, microbial N immobilisation occurs at its potential
rate and the value of r

N
 is set to 1. If in contrast, INA < IM

bio
, indicating inorganic N is

insufficient to meet microbial N demand, microbial N immobilisation is limited by N and
equals the total amount of N available. Decomposition of each substrate is reduced
accordingly with:

bio
N IM

INA
r =

In this case, all C fluxes are balanced proportionally to the N fluxes and N availability drives
the C decomposition rates.

The key features of the present decomposition model (MIT) that distinguish it from
CENTURY (e.g. as used in McMurtrie et al. 2001) are: (1) N immobilisation occurs only via
the active (microbial) organic matter pool; (2) microbial biomass succession is simulated by
a C flow from the active pool feeding back into itself; and (3) the C:N ratio of the active pool
is a function of litter quality.
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The experimental data used in this study to parameterise the decomposition (or MIT) model were
obtained from a litterbag experiment on decomposition of E. globulus slash residues under field
conditions (Shammas 1999). The dataset consists of mass loss and N content data from
decomposing slash leaves and branches (1 cm and 2 cm diameter) over a period of 2 years at
Manjimup (34o20’S, 116o00’E; 1023 mm rainfall per annum) in southwestern Australia.

The initial distribution of plant residue C over the litter C pools was based on proximate
fractionation analysis as described in Allen et al. (1974). The intrinsic decomposition rate
constants of the various litter pools were derived from the literature (Van Veen and Paul
1981). The critical cumulative soil evaporation calculated between two rainfall events at
which decomposition of surface litter ceases, was determined by tuning the model to the
observed C loss data from decomposing leaf slash residues. The decomposition rate of the
branch woody litter pool (10 yr–1) was obtained by fitting the model to observed C loss data
of decomposing E. globulus branches. The N:C ratio of the microbial biomass pool is
arbitrarily set to decrease linearly from 1/6 to 1/20, as the metabolic fraction of the incoming
litter decreases from 0.5 to 0. The C:N ratio of slow SOM was set equal to the C:N ratio of
microbial biomass plus 6. The external N input was set to 4 kg N ha–1yr–1.

As an example, the observed and simulated C loss data of decomposing leaf and branch (1
cm) slash residues are shown in Figure 3. The N dynamics in decomposing leaf and woody
slash residues were contrasting, with leaves exhibiting net N mineralisation, and branches
showing net N immobilisation. These different patterns were well captured by the model
simulations (data not shown).

Figure 3. Observed (points) and simulated (line) C decay of E. globulus leaf and branch (1 cm) slash
residues.

G’DAY model

The G’DAY model was parameterised for E. globulus using data from a first-rotation
plantation in Mumballup (33o33’S, 116o4’E; 950 mm) in southwestern Australia. This site
was selected because the dataset provides both tree growth and N mineralisation data
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(Hingston and Galbreith 1998; O’Connell and Rance 1999). The soil at the site is a shallow
Xanthic Ferralsol (FAO classification) with a sandy loam texture at the surface. E. globulus
was planted in 1988 and in 1990 the stand had a stocking of 1250 stems ha–1 with a basal area
of 5.6 m2 ha–1.

Cumulative stem growth, simulated over a 3 year period starting from September 1990, is
illustrated in Figure 4. For these calculations we used a PAR utilisation efficiency (e

o
) of 2.7

g dry weight (dw) MJ–1. To match simulated values with stem biomass values estimated from
monthly measurements of stem diameter and tree height, allocation coefficients for the
various tree components were set as shown in Table 1. Stem growth showed a seasonal
pattern with slow growth rates in summer caused by water limitation.

Figure 4. Measured (points) and simulated (line) stem growth of a E. globulus stand (year 0 on x-axis
corresponds to September 1990, when the stand was 2 years old).

Table 1. Carbon allocation coefficients from model parameterisation.

Tree component Allocation coefficient (%)

Stem 38
Branches 25
Leaves 10
Fine roots 27

Experimental results indicate that leaf litter production was variable in time without any
noticeable pattern (Hingston F.J. unpublished data). Based on these data, in the model we
assumed a constant leaf litterfall rate of 0.3 yr–1. For branches a constant of 0.03 yr–1 was
derived from analogous measurements (Hingston F.J. unpublished data). The litter production
rate for fine roots was set at 2.0 yr–1 based on data from Fabião et al. (1985).

The N:C ratios of the various tree biomass pools were derived from measurements on the site
or, if measured data were not available, from data in the literature. A crucial parameter for soil N
mineralisation fluxes is N retranslocation from senescing leaves and fine roots. Nitrogen
retranslocation was on average 42%, as determined from the difference between N concentration
in green foliage and litter measured on the site between September 1992 and June 1993
(Hingston F.J. unpublished data). Exact information on nutrient retranslocation from fine roots is
lacking. In the model, we set root N retranslocation to 10% (Nambiar 1987).
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We compared simulated N mineralisation with measurements made in the top 20 cm soil layer
over the period from 1992 to 1994 (Table 2- O’Connell and Rance 1999). We assumed that
decomposition rates of belowground litter or SOM decrease linearly with soil moisture below a
relative moisture value of 0.7, and are 0 below a threshold value of 0.1 (Paul K. and O’Connell
A. M. unpublished results). The model was able to reproduce the N mineralisation pattern at the
site (data not shown). Nitrogen mineralisation rates were highest during late winter and spring
when soil moisture was not in deficit and soil temperature was rising. Rates were low or zero in
summer, when the topsoil dried below wilting point. In calculating the amounts of net N
mineralised (on an annual basis, see Table 2) the initial soil C and N status are important, as they
determine the contribution of the SOM pools to the net N mineralisation fluxes. Direct
determination of the initial size of the slow and passive SOM pools is problematic, since these
pools are defined on a conceptual basis. The initial level of total SOM was set at 65 t C ha–1,
based on measurements in the top 30 cm layer (Hingston F.J. unpublished data). The initial level
of microbial biomass was set at 1% of total SOM (personal communication, D. Mendham) and
the amount of slow C was set at 15%. With these initial parameter values, annual net N
mineralisation was reasonably well predicted over 3 years by the model (Table 2).
Overestimation by the model is reasonable, since measured data represent only the net N
mineralisation in the top 20 cm soil layer (O’Connell and Rance 1999).

Table 2. Observed and simulated annual N mineralisation in a 4-yr-old (in 1992) E. globulus stand.

N mineralisation (kg N ha–1yr–1)
Year measured simulated

1992 72 78
1993 81 107
1994 81 86

Impact of harvest residues on N mineralisation

Using the above model, we simulated the effect of slash residue retention on site productivity
in terms of N mineralisation. Results from a study by O’Connell et al. (2000) indicate that
slash loads following harvest of first-rotation E. globulus stands vary largely with site
productivity. Slash loads were 13 and 21 t dw ha–1 of leaves, and 18 and 30 t dw ha–1of woody
material, respectively on a fertile red earth soil and a less fertile grey sandy site. The
corresponding amounts of N in the slash residues ranged from 220 to 350 kg N ha–1, which
are considerable amounts in relation to the stores in the surface soil (O’Connell et al. 2000).

In the following example we considered two cases: (1) no slash residues retained on the site;
and (2) leaves and small woody residues (branches) retained at load levels of 16 and 20 t dw ha–1,
respectively. The C:N ratio of slash leaves and branches were set to 40 and 150, respectively.

Results from model runs with and without slash retention are given in Figure 5. We
simulated the growth and N cycling of a E. globulus stand during 1 rotation (10 years) with
the parameter values as obtained from the model calibration (see above). With these
parameter values, retention of slash residues led to a net N immobilisation during the first
year of the rotation (Figure 5). This phase of N immobilisation was followed in subsequent
years by an increased N mineralisation compared to the situation where slash residues were
removed. At the end of the rotation (10 years), the model predicted that about 250 kg ha–1 of
extra N was mineralised in the scenario with slash retention compared to slash removal.
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The impact of retention of harvest residues on site productivity is currently being experimentally
investigated in two second rotation E. globulus plantation in southwestern Australia (O’Connell
et al. 2000). Results show that annual N mineralisation rates during the third and fourth years
after harvest on both sites are significantly higher when harvest residues are retained on the site.

Conclusions

We have described the structure and parameterisation of a detailed, process based C and N
cycling model (G’DAY) for E. globulus stands and investigated the impact of harvest
residues on N mineralisation. Model simulations suggest that retention of residues will favour
enhanced soil N supply for the next rotation. The risk of N stress due to N immobilisation
appears to occur only during the first year of the second rotation.

The present formulation of the model is based on the current knowledge of the processes
underlying tree growth, decomposition and N cycling in eucalypt plantations. The results of
the model predictions on slash residue management have to be tested against experimental
data. This will allow further improvements in model structure and eventually emerge in better
quantitative understanding of underlying processes of N cycling.
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Abstract

This paper demonstrates, using a large eucalyptus plantation as a case study, how
management-oriented growth and yield models may be used within a prototype decision
support system to assess forest wood sustainability. The growth model used is GLOBULUS,
which predicts whole stand development for different combinations of region, initial stand
density and site index. GLOBULUS also includes a series of equations for new stand
initialisation (by planting or coppice), essential for long term prediction of wood availability.
After describing GLOBULUS, we illustrate its application within the framework of the
decision support system developed at CEF, which simulates various management alternatives
in a eucalyptus forest area. The system is used to find the optimal stand management
prescription that maximizes net present value subject to pulpwood even flow constraints.

Keywords: Growth and yield model, decision support system, wood sustainability,
Eucalyptus globulus, Portugal

1. Introduction

Decision support systems for forest management are among the most important applications
of growth and yield models. The objective of such systems is to help in the selection of
management alternatives that meet certain user-defined goals and criteria. Management
alternatives (prescriptions) consist of schedules of activities over the planning horizon of a
forest stand. Davis and Johnson (1987) identified three essential elements of a management
alternative: (i) the classification of the forested landscape into homogeneous management
units (stands), (ii) the description of the management activity by which the vegetation and
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other resources will be manipulated or disturbed to achieve desired outputs, and (iii) a
quantitative growth and yield projection that describes stand development under each
management activity.

This paper demonstrates the use of a growth and yield model developed for eucalyptus
plantations in Portugal– the GLOBULUS 2.1 model – within the framework of a decision
support system that was developed at CEF (Centro de Estudos Florestais). The growth model
and the decision support system are briefly described and then applied together to simulate
management alternatives for a large eucalyptus forest area in the South of Portugal. This
forest area represents an interesting case study because it is a large area (4510 ha) without any
harvesting during the previous 3 years. Therefore, a ‘financial optimum’ solution would
imply the harvesting of a large area in the first years (all stands older than optimum rotation
age), thus producing an uneven flow of wood. The decision support system is used in order to
find prescriptions that lead to a more reasonable solution, both in terms of present net value
and even flow of wood.

2. The GLOBULUS 2.1 Model

The GLOBULUS 2.1 model is the present version of a growth and yield model that
systematises all the growth and yield information available in Portugal for eucalyptus. It
represents the product of a co-operative research project between industry and universities,
initiated in 1995, with three main objectives:

1. to combine all growth data available in Portugal for eucalyptus;
2. using these data, to develop the ‘best’ growth and yield model for eucalyptus plantations

in Portugal, applicable to the whole country, but reparameterised, if needed, for different
regions; the model should be aimed at: operational planning at stand or company level;
strategic planning at country or regional level (long-term wood availability for industry);
the definition of forest policy measures; and the definition and monitoring of sustainability
criteria;

3. to identify the need for additional data and trials.

Previous versions of the model have already been described (Tomé et al. 1998a; Tomé 1999).
Details of the present version of the model are given in Tomé et al. (2001).

2.1 Model regionalisation

The need to reparameterise the model for different regions was examined using a purpose-
designed climatic classification of Portugal (Ribeiro and Tomé 2000) based on climatic
information in digitised maps. Because not every plot included in the database was geo-
referenced, the unit of analysis was the county, an administrative division of the country
(Figure 1). The climate of each of the 275 counties in the country was characterised with the
aid of a GIS. Principal component analysis followed by hierarchical classification was then
used to divide the country into 8 climatic regions (Figure 1).

Figures 2 and 3 characterise the eight regions in terms of climate and productivity,
respectively. There is a strong impact of precipitation on the productivity in each region. The
number of frost days, however, can offset water availability, thus inverting the yield ranking
for some regions. A set of 7 dummy variables was defined, in order to assess the need to
parameterise each model component for the different regions (Tomé et al. 2001).
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Figure 1. Climatic classification of the Portuguese territory (Home page of the EXCEL interface for the
GLOBULUS 2.1 model).

Figure 2. Summary of the mean annual climate in each one of the eight climatic regions. Regions are
ranked according to mean site index (Figure 3).
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2.2 The database

The model was developed using a large amount of information on the growth of eucalyptus
stands in Portugal from several sources – permanent plots, experimental trials, and continuous
forest inventory by pulp companies – organised into a common relational database. At
present the database includes 31 416 measurements from 11 371 growth periods. The
coverage of data on the control variables used in GLOBULUS – age, site index, initial stand
density, region and rotation – is far from complete (Tomé et al. 2001) because (i)
experimental trials do not cover the full range of other control variables, (ii) some regions and
old ages are poorly represented, and (iii) coppiced stands are poorly represented in some
regions (sometimes not at all).

2.3 Model structure

The overall structure of GLOBULUS 2.1 is shown in Figure 4. The model includes:

• state variables, that define the state of the stand over time; these are divided into driving
variables (directly predicted from a growth function) and derived variables (indirectly
predicted from allometric or other equations);

• control or external variables, that control the development of the state variables; control
variables can be environmental, cultural or intrinsic to the stand.

Table 1 lists all variables currently included in the model.
GLOBULUS 2.1 has two main modules (Figure 4): initialisation and projection. The

projection module includes a system of compatible functions to predict the growth of each
driving variable as a function of its starting value as well as the control variables and other
driving variables (through growth functions formulated as first order non-linear difference
equations). The derived variables are predicted as a function of state and control variables.
The initialisation module predicts each stand variable as a function of the control variables
that characterise the stand. This module is essential for the decision support system because it

Figure 3. Box-plots for productivity, represented by site index (base age 10), in each one of the eight
climatic regions. The central line in each box indicates the mean site index while the bold line indicates
the 50% percentile and the edges the 25–75% percentiles. Only one point per permanent plot is
represented.

1st rotation stands coppiced stands



The Use of Management-Oriented Growth and Yield Models to Assess and Model…    85

Table 1. Variables currently included in the GLOBULUS 2.1 model.

Control variables Driving variables Derived variables

Environmental: Dominant height Merchantable volumes
Site index (base age 10) (over and under bark)
Climatic region Number of trees ha–1

Cultural: Stand basal area Total biomass
Initial stand density (1st rotation) Total volume (aboveground)
Stand density after thinning (coppice) (over and under bark) Biomass per plant
Rotation age component: branches,

leaves, wood, bark

Stand:
Rotation Carbon stock per plant
Age component

Figure 4. Structure of the GLOBULUS 2.1 model.
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allows for new stand initialisation (by planting or coppice). Site index in the first coppice is
similar to the site index of the respective first rotation, slightly higher in very good sites and
smaller in poor sites (Tomé and Soares 1998). Site index (base age 10) in the second cutting
cycle is modelled as a region-specific function of site index in the first cycle.

Further details of the model functions, and the statistical methodologies used to parameterise
them, are given in Tomé et al. (2001). The EXCEL version of the model, described in section
2.4, is available from the GIMREF internet site (http//www.isa.utl.pt/DEF/CEF/GIMREF).
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2.4 The EXCEL interface

GLOBULUS 2.1 is implemented in the decision support system described in the next section.
It is also available in an EXCEL workbook that can be used for qualitative evaluation of the
model by users and for teaching and demonstration purposes. Such an interface is very useful
to users of the decision support system, so that they may understand how the model functions
and become confident (or not) about its use.

Figure 1 shows the initialisation sheet of the EXCEL interface of GLOBULUS 2.1. In this
sheet the user selects the region in which the object stand is located. From there it is possible
to access a series of sheets containing relevant information or model outputs:

• Yield table sheet (Figure 5), in which the site index and initial stand density are specified.
The user may estimate the site index, provided that he knows a pair (age, dominant
height). It is also possible to choose the volume type for the yield table: i) total volume or
merchantable volume, by choosing the top diameter (0, for total volume); ii) over or under
bark volume, indicated by the dummy variable bark (0 – without bark; 1 – with bark).

• Site index curves (Figure 6) over the range of site indices that may occur for both cutting
cycles in the chosen region.

• Basal area curves and mortality functions for the first and second cutting cycles for
different combinations of initial stand density and site index.

• Plots of volume growth, mean annual and current annual increments, for 9 combinations of
initial stand density and site index, for the first and second cutting cycles (Figure 7). The
model reproduces well the combined effect of site quality and initial stand density on stand
age at maximum mean annual increment as observed in spacing trials (Ribeiro et al. 1997).

• Biomass, carbon and nutrient accumulation by plant component: wood, bark, leaves and
branches.

• Comparison of first rotation stands with the respective first coppice (in the present version
other coppices are assumed to be equal to the first).

• Model functions and parameter estimates for each region.
• List of counties as an aid to selecting the appropriate region.

3. The Decision Support System

The decision support system developed at CEF for multifunctional forest ecosystem management
is based on a set of integrated modules and sub-modules (Figure 8). The primary target level of
the system is the management area – a forest project impact area – which is subdivided,
according to ecological and productive criteria, into several forest stands.

Miragaia et al. (1996; 1998; 1999) described the first module of the decision support
system, a forest management information system – inFlor – that stores all the data that may
be relevant for forest resource management according to various goals and criteria. The
Portuguese Forest Service, the Nature Conservation Agency, forest industry, forest
researchers, and environmental groups provided diverse information on the data requirements
for forest ecosystem management in Portugal, including the identification of entities,
attributes and the relationships between them.

In addition to the management area and management units (stands), the system also considers
the entity plot that represents a sampling unit for field data gathering. Other entities include
ecological features of forest stands (e.g. soil characteristics, occupancy, development and water
resources), events that may occur in a forest stand (e.g. site preparation, thinning, clearcut) and
plot data (e.g. tree measurements and dbh distributions) as well as technical and economic data.
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Figure 5. Yield table sheet of the EXCEL interface for the GLOBULUS 2.1 model.

Figure 6. Site index curves sheet of the EXCEL interface for the GLOBULUS 2.1 model.
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Figure 7. Interaction between number of trees at planting and site index as shown in the Interaction
NplxSi sheet of the EXCEL interface for the GLOBULUS 2.1 model.
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Figure 8. Structure of the CEF decision support system.
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Forest management problems generally involve a large number of management units and an
extended planning horizon. Thus, the automation of the process of describing management
activity schedules in each unit and of quantifying resulting product flows is crucial for
decision analysis. For example, currently, inFlor stores data for more than ten thousand
management units. If 20 prescriptions were considered for each unit over a planning horizon
extending over 100 years, the number of management options would reach 200 thousand. The
quantification of the corresponding product flows would be extremely inefficient if the
overall process were not automated. For that purpose, the decision support system second
module – sagFlor – automates the process of generating forest management prescriptions for
management units stored in the information system inFlor (Borges and Falcão 1999; Falcão
et al. 1999). The module sagFlor integrates a set of forest growth and yield models (from a
third module modFlor): GLOBULUS (Tomé et al. 2001, described in this paper) for
eucalyptus; the maritime pine yield table of Oliveira (1985) and the DUNAS model (Falcão
1999) for maritime pine; and SUBER (Tomé et al. 1998b; 1999) for cork oak.

A fourth module, decFlor, allows the selection of models (via sagFlor) for solving a wide
range of forest ecosystem management problems, such as the optimisation of timber net
present value, either unconstrained (financial optimum) or subject to various types of
constraints (e.g. even flow, adjacency, minimum harvest patch size) in various combinations.
Details of the optimisation algorithms are given in Falcão and Borges (in press).

4. Modelling Forest Wood Sustainability in a Large Eucalyptus Area

Here we illustrate the use of GLOBULUS within the decision support system for a large
eucalyptus plantation – Serra de Ossa – located in the South Interior region of Portugal
(region 7 of the GLOBULUS model). The plantation has 4510 ha and includes 660
management units – stands – with areas between 1 and 106 ha. This area has not been
harvested during the previous 3 years, and therefore has a large percentage of management
units older than the optimum rotation age. The objective is to find a set of prescriptions that
guarantees a more or less even flow of wood, minimising the loss in present net value. The
sagFlor interface is used to find this set of prescriptions.

The sheet for selecting management units (Figure 9) offers a set of options that enable the
user to specify selection criteria, e.g. Inventário Posterior a (date of last forest inventory),
Idade Superior a (average age greater than), Área de Gestão (Management Area), Utilização
(major use) or Espécies (forest species). Figure 9 illustrates the selection of all the eucalyptus
in Serra de Ossa. The buttons to the lower right (Figure 9) lead to a map and table of the
selected management units.

The definition of management options available for each forest type is interactive. For that
purpose, sheets were designed for defining management options for each forest type. For
example, Figure 10 displays all options available for eucalyptus management (Parâmetros
dos modelos de silvicultura). These include spacing (compassos de instalação), cutting cycle
age (Idades de corte), average number of shoots per stool (Número de varas por toiça) and
number of cutting cycles in a rotation (cortes de talhadia).

After defining the management options, the grid in the lower left corner (Figure 10) will
then display all sylvicultural models that were generated according to the user-defined
parameters. In the present case study sagFlor automated the generation of 512 alternative
models that differ only in cutting cycle age. The grid displays the twenty-first such model
(Figure 10).
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At this point, the user may decide to analyse forest management planning based on stand-
level technical decisions, or to generate information for management alternatives. In the first
case, the user may simulate one unique management alternative for each unit (Falcão et al.
1999). For that purpose, after selecting one silviculture model, the user may check the option
button (Apenas 1 (simulação simples)) in the frame Número de Alternativas de Gestão
(number of management alternatives) in the lower right corner (Figure 10). In the second

Figure 9. sagFlor sheet for selecting management units.

Figure 10. sagFlor sheet for defining management alternatives in eucalyptus stands
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case, the user may choose between two options; sagFlor may be used either to generate a
limited number of management alternatives in each unit based on Monte Carlo simulation, or
to generate all feasible prescriptions (Falcão et al. 1999). In the example shown, the user
checked the option button Todas as combinações (all feasible prescriptions). Thus sagFlor
will generate all feasible rotation combinations to define the management alternatives in the
Serra de Ossa eucalyptus units. The total number of management alternatives will depend on
the planning horizon defined by the user.

For each particular problem the user may use the system several times, changing the
parameters used to define the management alternatives allowed for each management unit
(Figure 10). In this way the system may also help the user in defining these parameters.
Considering the Serra de Ossa case study, suppose that an annual wood consumption of 40 x
103 m3 is set as a harvesting goal. Let us set the initial spacing for new stands to 3 x 2 m, the
number of shoots per stool in the range 2–3 and set a maximum of 3 cutting cycles.

As an illustration, sagFlor was used to simulate management alternatives under three
silviculture scenarios that differ in the range of allowable cutting cycle length (Table 2). Two
decision algorithms were considered, both with the objective of maximizing total net present
value. In the first, no constraints were considered, and a simple computational procedure was
used to select the optimum prescription for each stand (FO). In the second, pulpwood even
flow constraints were applied, and a genetic algorithm was used to assign one prescription to
each stand (GA).

The first algorithm (FO) led to higher net present values but annual harvests fluctuated
substantially, thus deviating from the target annual pulpwood supply level of 40 000 m3

(Table 2). The second algorithm (GA) produced solutions with slightly lower net present
value, but volume flows approximated the target values (Table 2).

As expected, widening the range of allowable cutting cycle lengths leads to better solutions
using either algorithm. The associated increase in management flexibility may contribute to
higher financial returns, and allows for easier compliance with pulpwood even flow constraints
(Table 2). With a range of cutting cycle length of 10–19 yr, a third algorithm was considered in
which pulpwood flows might deviate by up to 5% from the targets. A genetic algorithm was used
to approximate the solution. As expected, relaxing the flow constraints leads to an increase in net
present value, approximating the value achieved under the financial optimum algorithm (FO).

Table 2. Results from the sagFlor interface for different ranges of cutting cycle length and different
optimisation algorithms: financial optimum (FO), and genetic algorithms to maximise net present value
subject to an even flow of wood (GA).

Length Consumption Net Annual harvest of wood
cutting level present (ahw)
cycle annual Tolerance Optimis. value max* min d40>5†

(range) 103 m3 % Alg. 109 PTE

10–13 – – FO 2.496 211 0 29
10–13 40 0 GA 2.143 102 0 2

10–16 – – FO 2.564 166 0 29
10–16 40 0 GA 2.286 55.9 36.6 1

10–19 – – FO 2.610 174 0 27
10–19 40 0 GA 2.289 39.8 38.2 0
10–19 40 5 GA 2.325 41.9 38.1 0

*maximum ahw always occurs in the first year; †d40=|ahw-40|
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Because the decision support system is integrated within a geographical information system,
the solutions may be visualised in map form. Figure 11 shows the age distribution in year 12
when the decision support system was used to optimise timber net present value subject to
flow constraints, using simulated annealing. It is also possible to visualise the operations
(thinning, harvesting) to be applied, for each period in the planning horizon, in each
management unit.

5. Final Remarks

This paper demonstrates the use of a growth and yield model developed for eucalyptus
plantations in Portugal– the GLOBULUS 2.1 model – within the framework of a decision
support system that was developed at CEF (Centro de Estudos Florestais).

Figure 11. Map displaying the age class in each unit in year 12 of the planning horizon if the maximum
net present value management alternative was selected for each unit in Serra de Ossa.

The GLOBULUS 2.1 model is the present version of a growth and yield model that
systematises all the growth and yield information available in Portugal for the species. It
predicts all the stand variables important in terms of pulpwood yield, taking into account the
region where the stand is located and allowing for different planting densities and site indices.
It is also possible to initialise new stands – both first cutting cycle and coppice – as a function
of a few control variables: region, initial stand density and site index.

sagFlor is a computational module that efficiently reads data stored in a management
information system (inFlor), and provides a user-friendly interface for generating forest
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management prescriptions. Currently, this set of programs integrates the most recent versions
of Portuguese forest species growth and yield models. Its modularity allows easy updating of
existing models and inclusion of models for other forest species.

In this paper, we have demonstrated how the sagFlor interface may be used to select and
analyse stand data organised in the management information system; to define the
management options available for each forest type; to analyse forest management planning
based on technical stand-level decisions; and to generate information for management
models. The ability to take account of the complex spatial and temporal interactions between
decisions made at the stand level is crucial for decision analysis (Falcão et al. 1999).
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Abstract

Among forestry activities in Chile at present, silvicultural tasks involve the greatest amount of
labour instability. Due to their seasonal character and short duration, a continuous turnover of
non-specialized workers is generated. To manage this situation it is necessary to predict the
number of workers required to perform such tasks, considering cost and labour stability
simultaneously. The objective of this study was to develop and compare the performance of
several optimization models for solving this problem, based on different objectives and
constraints. Our results indicate that constrained optimization models can aid the effective
scheduling of silvicultural activities at an operational level, thus providing an example of how
models can be used to address the socio-economic aspects of sustainable forest management.

Keywords: operational planning, activity scheduling, labour stability, Chile

Introduction

This paper concerns the application of models to the socio-economic aspects of sustainable
forest management. At present, the forestry sector is one of the most dynamic components of
the Chilean economy. In an open economy, however, the productive factors are constantly
changing, and forestry activities are becoming more competitive and less profitable.
Moreover, the productive and social constraints of sustainable forest management are of
increasing concern. These constraints have led forestry companies to develop new techniques
for improving the return of their investments by means of increasing yields, optimizing
production systems, and minimizing operational costs.
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Mathematical models may be used to solve a variety of problems such as selection of
management regimes, log merchandising, and transportation scheduling. To date, however,
the problems analyzed by forestry companies have mainly concerned the efficient allocation
of resources at a strategic (Barros and Weintraub 1982; García 1984) and tactical level
(Laroze and Greber 1991; Weintraub et al. 1994). Simulation and optimization models have
been used much less frequently for solving operational problems, the scheduling of
silvicultural activities being a particular case in point (Muñoz and Andalaft 1991).

At present, silvicultural activities involve the greatest amount of labour instability within
the Chilean forestry sector. The seasonal character and short duration of these tasks leads to a
continuous turnover of non-specialized workers. One way forward would be to schedule
silvicultural activities by considering cost and labour stability simultaneously; that is, by
maintaining as regular a workforce as possible in order to reduce monthly labour fluctuations,
without affecting operational costs. Such an approach might improve the use of forest camps,
increase companies’ administrative efficiency, and achieve a labour stability that could
stimulate a worker-training program by the forestry contractors.

In this study, several optimization models were developed for scheduling silvicultural tasks
over a one-year planning horizon. The lack of proven models of this type made it necessary
to design and evaluate alternate formulations. By implementing different objective functions
and constraint sets, and comparing the results in terms of cost and labour stability, we were
able to generate effective management solutions at an operational level.

Data on Silvicultural Tasks

Forestal Mininco’s Department of Forest Management (Concepcion Region) provided the
data for silvicultural activities. Data on 20 tree-farms representing diverse conditions were
extracted from the 1995 annual plan. For each tree-farm, the data consisted of the area, cost,
labour productivity, and feasibility periods for eight silvicultural interventions. A 12-month
planning horizon was considered.

Objectives and Constraints

Based on the annual program of silvicultural activities, mathematical programming
techniques may be used to efficiently tailor the workforce for each task at each tree-farm, on
a monthly basis. The input required consists of the periods in which it is feasible to perform
the tasks, the expected labour productivity and cost, and the available budget.

Because the problem of scheduling silvicultural tasks was not clearly defined, several
models were evaluated, based a combination of different objective functions and constraint
sets. Thus we were able to examine different scenarios and compare the optimal solutions
obtained in each case. The following objective functions were considered:

• Minimization of total cost: the solution minimizes the total cost incurred by all the
silvicultural tasks at every tree-farm.

• Minimization of total labour: the solution minimizes the total workforce required to
execute all the silvicultural tasks considered.

• Minimization of workforce variance: the aim here is to minimize the variance in the
number of man-days hired throughout the season – a proxy for maximizing labour stability.
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• Minimization of the maximum workforce required per month (MMW): the aim here is to
minimize the peak labour requirements in each month, and thus indirectly to reduce the
total annual workforce and to standardize the workload in different periods. This objective
function is complemented by restrictions that ensure a positive difference between the
objective value and the number of man-days hired in each period of the season.

The following constraints were considered:

• Annual program (A): this constraint, implemented in all models, ensures that the solution
performs the annual program of silvicultural activities in every tree-farm.

• Range of allowable man-days per month (R): this forces the solution to hire a number of
man-days per month that does not exceed a maximum bound nor is lower than a minimum
target, taking into account all the tasks in the different tree-farms. This range allows
regulation of the workload distribution in absolute terms.

• Workforce fluctuation (F): this forces the solution to maintain the relative differences in
the number of man-days hired in consecutive months within a specified percentage.

• Minimum and maximum monthly size per activity at each tree-farm (S): These restrictions
force each silvicultural task to have a minimum areal extent (defined by a practical limit
that makes its execution possible) and a maximum areal extent (set by an operational
bound), in each month and at each tree-farm.

• Continuity condition (C): this condition acts to reduce task interruptions, by associating a
cost to the beginning and ending of each task. If the assigned costs are high enough, the
continuity conditions become implicit constraints.

• Maximum total cost (P): It restricts the solution not to exceed a pre-defined budget for
executing the annual program of silvicultural activities.

The constraints were parameterised as follows. A maximum variation of ±10% was accepted
for the workforce hired in successive months. For the total workforce hired per month, the
minimum (maximum) value was 5850 (7150) man-days for all the periods. These limits
correspond to approximately 10% variation in the average number of hired man-days per
month (6517), derived from the solution that minimizes workforce variance subject to
execution of the annual program (A). For each task, minimum and maximum areal extents per
month were assigned in the ranges 10–25 ha and 80–250, respectively, depending on the task.
The constant determining the condition of continuity was 0.1 ha, and the maximum total
budget was $1 675 525. This last value was used as a reference, and corresponds to the
solution which minimizes the total cost subject the execution of the annual plan (A).

A large number of combinations of objective functions and constraints is possible. The
following section presents the results obtained from a selection of these.

Comparison of Objective Functions

We first compared the solutions obtained for the four objective functions, subject only to
execution of the annual program of silvicultural tasks according to the company’s operative
targets (A). Then we examined the solutions obtained by including the additional constraint
regulating the minimum and maximum task sizes per month (S).

Solutions under constraint A only

Table 1 shows that minimization of total cost (the most efficient in economic terms) results in
a high monthly variation in budget and workforce. Minimization of total labour also generates



98    Models for the Sustainable Management of Temperate Plantation Forests

a high operative instability and, even though a reduction in required man-days of 3.5% is
achieved, the total cost is increased by 3.6%. This result is due to the fact that periods of
greater task productivity do not necessarily coincide with lower operational costs.

Table 1. Solutions obtained by minimizing various objective functions subject to different constraints.

Analyses Cost Labor Iterations
Minimize: Subject to: [000-$] CV [%] [man-days] CV [%]

Total Cost A 1676 87.2 76490 94.3 1
Total Labor A 1736 91.6 73793 92.9 1
MMW A 1794 13.5 77088 6.6 221
Workforce
Variance A 1821 11.9 78208 0.5 220

Total Cost A, S 1709 48.7 78405 58.4 954
Total Labor A, S 1759 49.4 75915 48.3 991
MMW A, S 1816 16.3 78403 15.1 26802
Workforce
Variance A, S 1825 14.1 78519 8.5 250000

Total Cost A, F 1717 17.4 76757 18.5 259
Total Cost A, R 1737 13.6 76981 10.2 194
Total Cost A, F, R 1738 14.1 77077 9.3 212

Total Cost A, S, C 1729 55.3 78763 64.6 20316
Total Cost A, S, F 1753 16.3 78177 18.7 54162
Total Cost A, S, R 1780 14.6 78149 10.2 13844

A = Annual program;  S = Minimum and maximum size per task ; F = Maximum workforce fluctuation; R = Range of allowable man-days per month;
C = Continuity condition.

Figure 1 shows the workforce distribution per month for the solutions obtained from each of
the basic models. Minimization of the maximum monthly workforce (MMW) and
minimization of workforce variance both generate a homogeneous distribution throughout the
year. However, this greater labour stability implies an important increase in costs (greater in
the case of variance minimization). Minimization of workforce variance is insensitive to total
cost and number of man-days, and thus achieves greater labour stability by means of an
inefficient assignment of tasks – that is, to even out the workforce distribution in months of
least activity it allocates to the tasks of poorest productivity. Consequently, minimization of
workforce variance leads to an increase of 8.7% in costs and 5.4% in man-days compared to
the minimization of total cost and labour, respectively.

Solutions under constraints A and S

When analyzing the solutions at the tree-farm level, it was observed that the minimization of
cost and labour concentrate each task in the month which is most convenient. In several cases
this results in the contractors’ actual workload capacity being exceeded. In contrast, MMW
and minimization of workforce variance generate solutions involving such low activity per
month on some tree-farms as not justify keeping a task open. To address this problem, we
added the constraint limiting the minimum and maximum task sizes each month (S).

Table 1 shows that this additional restriction generates an important increase in operational
costs under minimization of costs and labour, but it also reduces the monthly variability in
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costs and labour. In the case of the remaining two objective functions (MMW and
minimization of workforce variance), adding constraint S had a lower impact on costs but
decreased labour stability.

The processing time is negligible for the basic models, including minimization of
workforce variance (which is the only non-linear programming model). For the problems
involving integer variables, a significant increase in processing time took place for the MMW
model, although the solution time did not exceed 10 minutes on a Pentium Intel-166 MHz
computer. However, in the problem of variance minimization (a non-linear integer model),
the processing time exceeded 24 hours even when the solution corresponding to the MMW
model was used as a starting point. In this case, the best feasible solution obtained within a
limit of 250 000 iterations was selected.

Comparison of Constraints

Several constraint combinations were examined for the objective function of minimizing total
costs. In each formulation, new restrictions were added successively to the basic problem –
minimizing total costs subject to completion of the annual program (A). Table 1 shows how
economic interests oppose those of labour and operative stability, by augmenting total costs
as the constraints of the problem increase.

For example, limiting the range of man-days (R) has a larger impact on cost than restricting
the workforce fluctuation (F), but also makes the workforce distribution more homogeneous.
By restricting the fluctuation in the number of man-days between consecutive periods (F), it
is possible to achieve a considerably more uniform distribution of activity than in the base

Figure 1. Monthly workforce distribution according to the selected objective function.
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case (the coefficient of variation decreases from 94.3% to 18.5%). However, the changes in
the number of man-days present a trend, the accumulated difference over 6 months being
close to 35% for a tolerated fluctuation of 10% (4555, 7336, and 5374 man-days for months
1, 6 and 12, respectively). Combining constraints F and R has little effect on costs but a
significant effect on labour stability.

Combining the constraints of minimum and maximum task area per month (S) and the
condition of continuity (C) avoids a series of operative problems, but increases the total cost
by 3.2%. Combining also the constraints on workforce range and fluctuation (R and F), the
total cost increases by 8.5% compared to the basic model (from thousand-$ 1676 to 1818),
while the coefficient of variation of the workforce is reduced from 94.3% to 9.2%.

The processing times in Table 1 indicate that when the complete set of constraints is used a
combinatorial problem takes place, which is difficult to solve due mainly to a conflict
between the continuity condition (C) and the restrictions related to workforce distribution (R
and F). Under this situation it was not possible to find an optimum solution in less than 2.5
million iterations, equivalent to approximately 12 hours of computer time. However, if a
3.5% tolerance is considered for the theoretical limit, a reasonable solution can be obtained in
approximately 30 000 iterations. All other formulations of the problem had a solution time of
less than 20 minutes.

Trade-off Between Cost and Labour Stability

The problem of minimizing the workforce variance was solved for different allowed
maximum total costs. Figure 2 presents the results.

Figure 2. Trade-off curve cost-labour stability.
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fluctuation constraints (R and F), the workforce variance is 9.3% with a cost of $1.74 million
(Table 1). With the same budget, the variance is 8.5% when the workforce variance is minimized,
increasing to 11.4% as the maximum total cost allowed is decreased to $1.73 million.

The curve in Figure 2 corresponds to the most efficient transaction points, in terms of the
cost of improved labour stability. In the case illustrated, the curve shows a relatively
favorable cost/labour stability trade-off up to $1.73 million. From that point on, improved
stability is achieved only with considerable increase in total cost.

Dominant Solutions

In the above we examined the problems of minimizing workforce variance and MMW under
the constraints of annual program (A) and minimum/maximum task areas (S). Here, for each
problem we included an additional constraint that limits the budget allowed for the solution
(PB = the reference budget of $1.676 million, or PS = a larger budget of $1.709 million).

Table 2 indicates that it is possible to improve labour stability without increasing costs. In
models with constraint A only, the workforce variance decreased from 94.3% to 67.0% (or
59.7%) for MMW (or minimizing workforce variance). For the models that also include size
restrictions (S), gains in labour stability are less because these restrictions themselves have a
regulating effect when the total cost is minimized. However, when the operative budget is
larger (constraint PS), there is more scope for finding a more stable labour solution (Table 2).

For a given budget, optimal labour stability is achieved by minimizing the workforce
variance. However, one should bear in mind that this objective function is a quadratic form
which, with integer variables, becomes a difficult problem to solve. In contrast, minimizing
MMW is a Min-Max type model of linear nature, that enables solutions to be found in
considerably less time, more so when the size of the problem increases.

The optimization procedure employed generates dominants solution, in the sense that they
tend to maximize labour stability without increasing the total cost. By solving the problem of
minimizing total costs, the most economically efficient solution is obtained. When such a cost
is then used as a budget restriction (constraint PB or PS) in models aimed at achieving labour
stability, one obtains the optimal solution under these two conflicting interests.

Table 2. Dominant solutions.

Analyses Cost [000-$] Labor [man-days]
Minimize: Subject to: Total CV [%] Total CV [%]

Total Cost A 1676 87.2 76490 94.3
MMW A, PB 1676 60.9 76903 67.0
Workforce Variance A, PB 1676 50.7 76875 59.7

Total Cost A, S 1709 48.7 78405 58.4
MMW A, S, PS 1709 46.5 77863 53.5
Workforce Variance A, S, PS 1709 40.1 78287 48.5

A = Annual program;  S = Minimum and maximum size per task;  P = Maximum budget. (PB = 1676 thousand-$,  PS = 1709 thousand-$)
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Conclusions

The models examined above highlight how the problem of scheduling silvicultural tasks can
be formulated in different ways, according to the objectives and priorities considered at the
moment of planning activities.

In this sense, the objective function of minimizing total costs dominates economic interests.
Nevertheless, it is possible to significantly improve labour stability through restricting the
range of man-days to be hired, and their maximum fluctuation over time. The best results are
achieved combining both restrictions, since the second one only controls the variation
between successive months, but does not avoid the fluctuations accumulated throughout the
season. This situation is corrected by restricting, in absolute terms, the minimum and
maximum workforce to be hired in any period.

The best workforce distribution over the season is obtained by minimizing the workforce
variance, although in order to achieve this the model employs a more costly allocation of
productivity. The objective function of minimizing MMW also tends to standardize the
distribution of man-days, with the advantage that it is a linear model that requires a shorter
solution time. Minimizing MMW also tends to generate less labour demand and,
consequently, a lower total cost. However, this objective function becomes indifferent to the
distribution of man-days through time once it is not possible to reduce the workforce required
for a certain month. Therefore, it is not very effective when activity levels vary greatly during
the year.

The results of this study illustrate how economic interests oppose those of labour and
operative stability. Consequently, it is necessary to compare several formulations in order to
achieve a solution that harmonizes the various interests of the company. In particular,
dominant solutions provide a favourable option to overcoming conflicting objectives, by
allowing an improvement in labour stability without increasing total costs.

In conclusion, through the type of analysis illustrated in this study, it is possible to
determine the effect of different objectives and constraints on the solution of the optimization
problem. Such analysis enables forest managers to evaluate the additional costs required to
satisfy the diverse requirements of the company. Our study illustrates the way in which
mathematical programming techniques may be applied to efficiently plan silvicultural tasks at
an operative level.
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Abstract

We present a stand-level assessment of long-term productivity changes in four sessile oak
(Quercus petraea) high forests, using a mensurational growth and yield model. We estimated
productivity trend curves as smooth functions of calendar date, in addition to factors such as
age, stand density and site productivity. We used a network of 35 permanent plots observed
over 60 years, for which age and date were reasonably independent, and silviculture had been
accurately recorded. Stand basal area increment varied markedly over the past 60 years. At
two of the four sites studied, the normalised trend in basal area increment increased by
between 25 and 55%, depending on the underlying model for the age factor. The westernmost
site (Normandie) showed a more complex trend (decreasing productivity until 1960,
increasing thereafter). Problems remain concerning the generalization of these results to other
species and regions, using dominant height as a summary of productivity. The extrapolation
of past growth curves over the next 100 years is also discussed.

Keywords: Quercus petraea, growth trends, global change, forest stand yield, France

Introduction

The productivity of European forests has systematically increased over the past 150 years
(Spiecker et al. 1996). This now-accepted fact has important consequences at all levels of
forest resource management:

1. At the stand level, rotation ages will be dramatically shortened: stands are now growing
faster than their counterparts 100 years ago, by between 50% (Dhôte and Hervé 2000) and
100–150% (Pretzsch 1996). In several recent French surveys, young common beech
(Fagus sylvatica) stands exhibited Site Indices far higher than any stands of the same age
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during the 1930s (Contesse 2000). Some authors argue that silviculture may explain part
of the growth increase in intensively managed plantations (Cannell et al. 1998) or in semi-
natural broadleaf forests (Skovsgaard and Henriksen 1996). However, even lightly
managed stands such as oak (Quercus spp.) high forests (‘wild’ genetic material, low
thinning intensities, natural regeneration without site preparation or fertilization) have
undergone significant growth increases (Becker et al. 1994; Bergès 1998). Increased forest
productivity is now a fact with important implications for silviculture: for example, beech
and oak optimal rotation age may be shortened by one-third. Two other important issues
for foresters are: (i) the impact of enhanced growth on wood properties (specific gravity,
log grading); and (ii) the increase in storm damage susceptibility as mean stand height
increases.

2. At the forest estate level, shorter rotations have important consequences for regeneration
scheduling. Clearfelling or shelterwood cuttings should progressively increase, as
commercial maturity is reached sooner. Another management response is to decrease
thinning intensity, in order to compensate for faster growth. These strategies need to be
evaluated on an economic basis, using new models of growth, wood quality and risk.
However, social constraints may also become more acute if regeneration is accelerated:
clearfelling is increasingly contested in western Europe, even in the case of natural
regeneration.

3. At the regional level and in the socio-economic context, growth changes also influence
attitudes to wood supply, the functioning of the forest industry sector, and forest policy
(e.g. the potential for allocating forest labour to the most profitable areas, while reserving
large areas for recreation). There is also concern about the ecological sustainability of
fast-growing forests: the possibility of nutritional deficiency and its consequences such as
forest dieback (see also Corbeels et al. 2001; McMurtrie et al. 2001).

In order to help strategic planning in silviculture and resource management, new growth and
yield models are needed. Classical mensurational models, based on permanent plot observations,
are considered as efficient tools for simulating stand dynamics in response to site quality and
silviculture. However, they are also generally viewed as purely empirical, and hence not
appropriate for exploring the effects of changing environment. In this paper, our objective is to
illustrate an attempt to modify a mensurational model, in order to detect past changes in stand
productivity. The modification simply consists in incorporating a trend curve, as a function of
date, to account for the historical evolution of productivity. Thus the model is used as a
diagnostic tool. We did not consider the problem of predicting future changes, but we shall
examine some methodological issues related to this question in our conclusion.

Many of the available results on growth changes were obtained from dendrochronological data
(radial growth) or stem analyses (height growth) (Becker et al. 1995; Untheim 1996). An
important unknown, with retrospective methods, is linked to the fact that current tree growth
curves are used to estimate what happened in the past. Generally, a sample of trees is chosen
from the present population (e.g. dominant trees) and the assumption is made that this sample
had the same social rank throughout the stand’s life. This assumption, in turn, relies on the
classical observation that social rank is strongly conserved in densely stocked high forests such
as plantations and even-aged forests (Delvaux 1981). Nevertheless, rank conservation is not
absolute: growth trends estimated through retrospective methods may be biased by a signal
linked to stand dynamics (tree social promotion). Little information is available to measure this
bias, although adequate material exists in permanent plots to quantify it. One can expect that bias
is larger for radial than for height growth, due to their different growth patterns.

A second drawback of retrospective studies is that they are based on tree-level increments.
The passage to stand level is not always straightforward. In the case of height growth, it can



Assessing Long-Term Changes in Stand Productivity: a Case Study of Sessile Oak High Forests    107

be argued that dominant height (the average height of the 100 largest trees per ha) is an
excellent indicator of stand productivity (e.g. Eichhorn’s law, (Eichhorn 1904)) and is almost
insensitive to stand density (Lanner 1985). The insensitivity of dominant height growth to
spacing is sometimes contested, especially in pine (Pinus spp.) plantations (MacFarlane et al.
2000; Meredieu 1998). However, thinning effects on dominant height growth are well-
documented for species like Norway spruce (Picea abies), common beech (Fagus sylvatica)
or oaks (Quercus spp.), that were intensively studied in Europe: they are hardly detectable,
provided that stand density remains not too low. It is reasonable to assume that silvicultural
influence on dominant height growth is restricted to early stages of development (plantation
density, length of natural regeneration) and does not affect further growth rates. Hence,
retrospective analyses of height growth may be used for estimating past environmental
conditions, by taking elementary precautions (e.g. using differential equations with respect to
height rather than age, excluding data relative to early growth).

In contrast to height growth, radial growth measured on increment cores responds to
silviculture: if thinning intensity has changed over the past decades, there is probably a
silvicultural signal in tree-ring chronologies taken from managed stands. This is a specific
drawback in European forests, the majority of which are managed, and the interpretation of
such data with regard to global change is not straightforward.

Thus, in order to assess stand productivity changes, it is also necessary to use continuous
stand-level observations, e.g. in permanent plot networks. Two conditions must be met: (i)
long-term observations of stand yield must be available, with reasonably stable protocols; (ii)
in the observed increments, one must be able to separate the ‘natural’ trends with stand
ageing from the external forcing attributable to environmental changes. For example,
Pretzsch (1996) used all Bavarian permanent plots and compared observed volume
increments to expected values from Yield Tables. It is difficult to assess whether Yield Tables
are appropriate tools for such purposes: the quality of growth changes estimated this way
depends strongly on the quality of the Table itself, especially regarding the pattern of stand
increment with age. Because Yield Tables were fitted to data from stands that were
undergoing growth changes (during the 20th century), it seems preferable to perform new
analyses of the raw data and test for date-related trends in the increments. The objective of
this paper is to illustrate such a study.

We chose to analyse sessile oak (Quercus petraea) high forests in France for several
reasons: (i) a network of 35 permanent plots had been installed in the 1930s, at four sites
distributed across France (from Normandie in the West to the more continental location of
Lorraine in the East); (ii) age and date were fairly independent in this data set, due to the
concommitent installation of plots at all stages of development (polestage to mature forest) at
the same date; (iii) this allows us to analyse the dynamics of oak stands throughout the stand’s
life, with a ‘wild’ and relatively stable genetic population; and (iv) over a period of 60 years,
the only silvicultural operations were a series of thinnings of different intensities (the
influence of which may be included in stand yield models by simple response curves).

Material and Methods

Plots and measurements

The French sessile oak network was created between 1925 and 1934. It is composed of four
forests, Bellême (Normandie, 0°31’E-48°23’N), Blois (Loire Valley, 1°16’E-47°34’N),
Tronçais (Centre, 2°44’E-46°39’N) and Champenoux (Lorraine, 6°21’E-48°42’N). In each
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forest, 10–11 plots (four in Champenoux) were installed simultaneously in five to six
compartments at various stages of development (from polestage to mature high forest). In the
three youngest stands of each forest, generally two plots were installed, in order to compare
heavy vs light thinnings. In mature stands, only one plot was available, in order to provide
yield figures during the regeneration phase. Initial stand age in the 1930s ranged from 35 to
200 years. Current age, at any date, ranged from 35 to 230 years. Hence, at any date between
1930 and the present, a large range of ages are present in the data base. The overall simple
correlation between date and age is 0.329. Plot area is generally 1 ha, exceptionally 0.5 ha in
two young stands, and 2 ha in four mature stands.

All plots are at low altitude and on almost flat terrain. Geological and soil conditions vary
between forests (Trencia 1989). Within a forest, there may be some site differences between
plots. However, no detailed ecological description was done: this part of the network analysis
will be undertaken in the near future, as part of a further study of height growth patterns in the
surrounding regions. Unfortunately, Site Index can no longer be used – at least not so simply
– to test for site productivity similarity between plots, because height growth has been
accelerating over the past decades. In the analysis, differences of site conditions were
accounted for by estimating local productivity parameters (at the plot level).

Stands are pure and even-aged. Age evenness was checked at plot installation, by counting
rings on stumps (tree individual ages are ±15 years about the stand mean). The degree of
mixture was analysed throughout the observation period, using successive inventories.
Associated broadleaves (mainly common beech) never represent more than 10% of
overstorey basal area. Understorey was not systematically monitored: its stocking and species
composition differs between forests (very sparse in Blois, sparse-beech-hornbeam in
Tronçais, denser in Bellême, dense and very diverse in Champenoux). From previous studies
of individual tree growth and stand yield, we speculate that understorey history has little
influence on the results presented here. However, this cannot be easily tested.

Silviculture was quantified by stand density. We used an index computed after Reineke
(1933), Rdi: if N is the number of stems per hectare and d

g
 (in cm) is the quadratic mean

diameter, then

Rdi =
N.dg

α

β α =1.701  and  β =171582

The overall range of Rdi in the data set is between 0.45 and 1.05, except for stands during
shelterwood cuttings (where Rdi rapidly approached 0). Of course, the heavier the thinnings,
the lower the density indices. Globally, there is a slight trend for Rdi to decrease with stand
age, with a simple correlation of –0.322.

Data collected in these plots are two-fold: periodic complete inventories of tree girth at
breast height and periodic measurement of total height (and volumes) on samples.

Inventories were performed on the following population: below age 60, trees were not
physically numbered, and all trees larger than 1 cm (diameter at breast height) were measured
for girth (or diameter) at breast height, whatever the species. Above age 60, tree numbering
was done only on overstorey trees (oaks and other species), and hence, following this
operation, only numbered trees were measured. Around the date of tree numbering, a specific
method was designed to accomodate for the changing population: trees not numbered were
considered as a thinning.

From these raw data, all stand statistics are computed (number of trees per ha, basal area
etc…). Basal area increment is the variable analysed in this paper. This increment is ‘raw’,
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i.e. it includes trees dying during the corresponding period: net increments were much more
erratic, due to irregular mortality rates (silviculture also influences this, and affects basal area
increment regularity). Accounting for dying trees is straightforward when tree lists are used.
When only histograms per diameter classes were available, we used a method for estimating
which diameter classes the dead trees belonged to (Dhôte and Hervé 2000).

Total height was measured on samples, not necessarily at each inventory date, but
systematically when a thinning was performed. Until 1950, these samples were large-sized (up to
250 trees per plot) and composed of all thinned trees (measures after felling). Later on, samples
of approximately 30 trees per plot were selected, so as to spread uniformly over the whole
diameter range and the plot area. These trees were measured standing, using optical devices.
Hyperbolic height-diameter curves were fitted to each sample, using previous analyses by Dhôte
and Hercé (1994): in this 3-parameter equation, two parameters were fixed for the whole data
set, and one was estimated for each sample. When no sample was available, the free parameter
was interpolated. Dominant height was estimated using dominant diameter and height-diameter
curves. There are a number of errors affecting dominant height estimated in this way (sampling,
measurement and modelling errors). The accuracy of height (and furthermore height increment)
was considered too low for the present analysis.

For the analysis, the sample size was: four forests, 35 plots, 340 inventories (plot x date),
305 growth periods (78 in Bellême, 102 in Blois, 46 in Champenoux, 79 in Tronçais).

Analysis

The objective was to analyse the variations of stand basal area increment iG, and specifically
to test whether there has been any long-term trend affecting this variable. However, basal area
increment is also affected by many factors:

• stand age (or stage of development);
• site quality;
• silviculture (described here by stand density Rdi);
• short-term climatic fluctuations (drought, frost damages, wind disturbance, that we wanted

to filter out); and
• other biotic or abiotic damage.

A common way to decompose these sources of variability is to use a multiplicative model of
the following form:

iG = F1 H0( ).F2 Rdi( )+ ε [1]

where F
1
 is a potential stand increment, depending on age and site quality (both summarized

in dominant height H
0
), F

2
 is a modifier for silvicultural effects (here using Rdi), ε a normal

error accounting for all other factors.
This model was adapted for the present study:

• we preferred not to use dominant height as a predictor for age and site influences; indeed,
since height is probably influenced by long-term changes, part of the trend we were trying
to estimate might have been absorbed by height; instead, we used a function of stand age
and estimated plot-specific ‘site quality’ parameters;

• a trend was introduced, as a multiplicative correction to model [1]; this trend was a smooth
function of date;
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• in addition to the trend, periodic fluctuations were also estimated; and
• we observed that residual variance was not homogeneous with age, being larger in the

young stages, when the independent variable was large; therefore iG was log-transformed,
and we assumed that the error was normal and additive on Ln(iG).

These assumptions led to the following model: the functions in model [2] were chosen by
graphical means, in order to mimic the observed trends (see below):

Ln iGplot, period( )= θ plot + θperiod + G1 age( )+ G2 Rdi( ) + G3 date( )+ ε
[2]

The question of model parameterization was difficult. The data set had a hierarchical
structure (forests, plots inside forests). Since forests are quite distant from each other,
subjected to contrasting climatic conditions and based on different soil types, it was possible
that they behaved differently with regard to any of the three functions in model [2]. To make
the problem statistically solvable, the following assumptions were adopted:

• the shape of the age curves G
1
 may differ between forests, but is the same for all plots

inside a forest; so we had to test for forest-specific parameters in this model component;
• the response curve to stand density G

2
 is a characteristic of the species behaviour, and

hence is global for the whole data set; and
• no a priori assumptions could be made for date trends, and we adapted the model to the

observed patterns.

Only linear models were considered for functions G
1 to 3

. It was fitted using the stepwise
regression procedure (descending mode) of software Statview 4.5™. Forest, plot and period
specific parameters were estimated using dummy variables. Effects having a probability of t-
test lower than 0.05 were removed from the model: for example, a plot-specific parameter
was estimated only when the plot increment differed significantly from the ‘mean model’.

Results

The first three steps of data analysis are summarized in Figure 1. Age is the first variable
introduced in the regression: log-transformed stand basal area increment decreases linearly
with age (Figure 1-a). At this stage no forest-specific parameters were introduced.

Figure 1-b shows the residuals of the first step, plotted against Reineke Density Index Rdi.
Inside the [0.5; 1] interval, there is a slight trend for stand increment to increase. However, a
linear model is not appropriate at both extremes of Rdi: also, returning to raw data from a
linear log-transformed model would give an exponential response curve, and we know that
this is not appropriate. The best combination we found was to use Ln(Rdi) (with a positive
parameter) and Rdi (with a negative parameter). Returning to the untransformed expression,
this produces a response curve of the form: Rdia.exp(-b.Rdi), with a and b positive
parameters. Since estimates of a (respectively b) were in the [1.3; 1.5] (respectively [1.6;
2.0]) intervals, this produces response curves with a flat maximum around Rdi = 0.7.

Figure 1-c shows the residuals after the first two steps. These residuals are segregated by
forest, and three different patterns are visible: (1) in Bellême, a parabolic shape, productivity
being higher than the mean at the beginning and end of the observation period; (2) in Blois,
no visible structure, and a quite large variance during the first decades; and (3) in Tronçais
and Champenoux, a monotonic trend.
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Figure 1. Three first steps of the analysis of log-transformed stand basal area increment (Ln(iG).
1-a. Linear regression with age as independent variable.
1-b. Residuals of former step plotted against Reineke Density Index Rdi (see text for definition).
1-c. Residuals of former steps plotted against date for each forest.
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These forest-specific behaviours could reflect our assumptions made at previous steps: for
example, removing age-effects with only one (global) parameter leads to a biased model if
forests have distinct age parameters. This possible bias was tested, by using forest-specific
age parameters. Such parameterizations were never able to remove the specific forest trends
presented in Figure 1-c. Date-trends were introduced in the model as linear functions. To
account for the particular case of Bellême, a segmented linear model was considered, with
two linear segments intersecting in 1960.

The fourth step of the analysis was to introduce two series of dummy variables in the model:

• a series of 34 plot-indicators, in order to estimate productivity levels for plots being
significantly more or less productive than the average; and

• a series of 13 calendar period-indicators (5 year intervals), in order to estimate temporary
higher or lower increments.

The last step of the analysis was to introduce all effects in the regression, and test for the need
to consider forest-specific age parameters. The final model reads:

Ln iG( ) = α + ϕ f
forests
∑ . I f + β0.

age

100
+ β f .

age

100forests
∑ + γ . Ln Rdi( ) +δ .Rdi

        + χ0. dat ′ e + χ f
forests
∑ .I f .dat ′ e + ψ .IBellême • dat ′ ′ e 

        + ωper. Iper
periods
∑ + ζ pl .Ipl

plots

34

∑
where I f  is 1 in forest f ,  else 0 (same for plots &  periods)

           dat ′ e = date − 1960

30
 and dat ′ ′ e = dat ′ e  if date < 1960,  else 0

In this model,  is the average age-pattern; if any of the parameters  is found

different from 0, then the corresponding forest has an age-pattern significantly different from
the average. The same parameterization is used for date-trends, in order to test for specific
forest-trends.

Statistics of fit of model [3] are given in Table 1. The model explains 73% of the variance
of Log(basal area increment) and the F-test of regression is 48.6. The most important
parameters were estimated with a high precision (probability of t-test less than 10–4). No
forest-specific parameters were found to be significant for the age-effect. The date-trends
varied markedly between forests, confirming the trends shown in Figure 1: Bellême had a
complex pattern (decreasing productivity between 1930 and 1960, then increasing), Tronçais
and Champenoux had a continuously increasing productivity, Blois increased less.

Discussion and Conclusions

Stand-level data confirm large productivity changes and suggest regional differences

Figure 2 shows the date-trends for the four forests (Tronçais and Champenoux grouped),
when we return to the original variables. These curves represent the multiplier to be applied

[3]

β0 .
age

100
βf
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Table 1. Statistics of fit for model [3]. Name of variable and parameter, parameter estimate, probability
of t- test for each effect.

Independent variables with an associated parameter significantly different from 0

Variable Parameter name Parameter estimate Prob (t)

Intercept α 1.885 <0.0001
age’ β

0
–0.582 <0.0001

Ln(Rdi) γ 1.494 <0.0001
Rdi d –2.067 <0.0001
I-Bellême ϕ

Bellême
–0.162 <0.0001

date’ χ
0

0.215 <0.0001
I-Blois.date’ χ

Blois
–0.086 0.0456

I-Bellême.date’’ ψ –0.606 <0.0001
Period name Period parameter
I-1930-34 ω

30-34
0.113 0.0058

I-1950-54 ω
50-54

0.197 <0.0001
I-1970-74 ω

70-74
–0.183 <0.0001

Plot Name Plot parameter
I-Hermousset1 ζ

Herm1
–0.150 0.0453

I-Sablonnières rouges ζ
SR

0.217 0.0152
I-Sablonnières1 ζ

Sablo1
–0.193 0.0028

I-Sablonnières4 ζ
Sablo1

–0.169 0.0159
I-Charmaie ζ

Charm
0.276 0.0395

I-Bois Brochet1 ζ
BB1

–0.143 0.0400
I-Clé des Fossés ζ

CdF
0.160 0.0293

Figure 2. Qualitative behaviour of model [3]. Trend curves of stand basal area increment, plotted
against date (from 1930 to 1990). These curves represent the multiplier to be applied to a general
model, in order to feature date-related changes of French sessile oak productivity.
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to an ‘intrinsic’ model (function of age, site quality and silviculture), in order to account for
the historical change of productivity in our data set. The reference value 1 was chosen for
Tronçais in 1960.

The behaviour at Tronçais and Champenoux is the simplest, and also the most consistent
with former results obtained from dendrochronological data. In these two forests, stand basal
area increment has increased by 54% between 1930 and 1990. Blois is also increasing, at a
lesser rate (+29%): the reason why this trend was not obvious in Figure 1-c is that 3 out of 10
plots in this forest had productivity levels quite different from the mean (in Table 1: plots
Sablonnières 1 and 4, Charmaie). The dendrochronological study of Becker et al. (1994),
concerning oak forests near Champenoux, gave a radial growth increase of +47% between
1930 and 1987, which is close to our figure.

These figures of growth change were obtained with model [3]. What level of confidence
can we have in these results? Model [3] may seem quite complex. However, complexity
arises mainly from the high number of dummy variables; the basic model has just 3
continuous independent variables: age, date and Rdi. As we mentioned above, these 3
variables are not completely independent: there are slight correlations between them (simple
correlation coefficients are about 0.3). This collinearity is due either to the temporal sampling
plan or to the evolution of thinnings during the stands’ life. The question is then: can this
collinearity create the date-trend, or at least bias its amplitude or sign?

At intermediate steps of the analysis, alternative models were considered. The most critical
modelling choice, as far as growth change is concerned, is the method of parameterizing age-
effects. Changing the model from a global age-parameter to specific forest age-parameters
modifies both the age and date parameters, due to the slight correlation between age and
calendar date (steeper age-effects are generally associated with steeper date-trends). In
Tronçais, for example, the estimate of growth change from 1930 to 1990 varied from 24% to
54%, according to the underlying age model.

Thus, our estimate of growth change is sensitive to the structure of the age-model.
Furthermore, among the variety of tested models, we adopted model [3] giving the larger
estimate of growth change (54% in Tronçais). We chose this model mainly for two reasons:
(i) the parameterization allows one to decide statistically whether forests should be
distinguished for both age and date effects; and (ii) the model structure uses all the relevant
information contained in the data base (forests, plots, silviculture, age, date).

The most surprising fact, in our analysis, is the complex history of Bellême, where the trend
was not monotonic. Productivity has sharply decreased between 1930 and 1960, and thereafter
has increased at the same rate as other sites. We do not think that this is an artifact of the model:
even with different equations or with specific forest age-patterns, the result remained highly
significant. This pattern is difficult to understand in terms of the effects on growth of CO

2

atmospheric concentration, nitrogen deposition and climatic warming (Cannell et al. 1998) .
Little information is available in the literature, concerning regional differences in the long-

term trends of forest growth. In the compilation by Spiecker et al. (1996), growth changes
were found by almost all contributing teams; the amplitude of change was variable, but there
were also a number of methodological differences that prevent a direct comparison between
sources (e.g. large inventory databases vs. permanent plots, height vs. diameter growth,
continuous yield observation vs. retrospective studies).

In conclusion, growth change estimates are sensitive to the quality of the age model and to
the robustness of the sample in the (age, date) plan. It would be of interest to obtain new data
on regional variations for growth change, by using reasonably standardized methods of
sampling, measurement and modelling. What makes the problem difficult is that there may be
regional or local (site) variability for both the age-pattern of increments and the date-related
trends. To confirm our result, it would be useful now to collect new data sets specifically
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adressing this problem: the sampling strategy will rely on: (i) strict control of ecological
conditions; (ii) considering different regions and replicating the design for different species;
(iii) separating age and date; and (iv) combining basal area observations in permanent plots
and dominant height reconstruction using stem analyses.

How can we adapt growth & yield models to a changing environment?

Among forest scientists, it is common to contrast growth and yield models and process-
models of ecosystem functioning, especially regarding their suitability for forecasting future
stand dynamics under a changing environment (Mohren and Burkhart 1994). Usually, the
former are considered empirical, i.e. constrained to reproducing historical observations from
field trials, whereas the latter are considered more general and more adapted to simulating
changing ecological situations.

However, growth and yield models are not simply reproductions of the ‘real world’, nor a
set of regression equations. They involve a theoretical framework that is frequently
overlooked, even – sometimes – by forest biometricians: (i) the concept of Site Index, for
pure, even-aged forests, is a very efficient simplification of site-related growth variability; (ii)
curves relating volume growth to stand density indices (Assmann 1970) are also efficient, and
present analogies with growth responses to Leaf Area Index in process-based models; and
(iii) the age-dependence of growth rates, or more generally the effect of developmental stage
– height being commonly used as a driving variable in growth and yield models (Arney 1984)
– is physiologically meaningful (Valentine 1985; Mäkelä 1986; Dhôte 1996).

On the other side, process-based models are not simply general, theoretical representations
of ecosystem dynamics. They involve a large number of parameters, for which estimates are
obtained by field or laboratory experiments. In this regard, the quality of predictions provided
by process-based models is dependent on the quality of parameterization, and hence on the
underlying data base. In addition, these models are usually quite complex, due to a large
number of processes represented. This makes them more versatile, but also more subject to
artifacts that may be difficult to evaluate.

Mohren and Burkhart (1994) did not consider that process-based models would ever replace
growth and yield models in traditional forest management applications. Simplicity of design is a
major advantage of the latter, not only for practical purposes, but also for model fitting and
validation. However, a fundamental hypothesis of growth and yield models is now clearly
violated, the invariance of site conditions: Site Index, for example, must be revisited. The major
drawback of growth and yield models is not that they are contingent on data (all models are,
except purely theoretical ones), but that they are based on a phenomenological theory that does
not explicitly feature the underlying growth factors (C, N and other nutrients, water).

In order to predict future stand dynamics under changing environment, growth and yield
models will have to change radically. Two aspects of their design seem critical (see also
Dewar 2001):

• the state variables (height, basal area, density indices…) might become more diverse: for
example, the use of Leaf Area Index should be examined (does LAI bring information
beyond that of stand density indices?); also, explicit inputs of the main environmental
resources (CO

2
 concentration, soil N and water reserve) will probably be necessary; it is

certainly counterproductive to get into sophisticated details of basic physiological
processes associated with these resources, but general response curves for height and basal
area growth would be very useful; and

• the structure of growth equations should be improved, by incorporating concepts of
process-based models: for example, transposing the principles of carbon budgets at the
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relevant scales (stand, year) could help designing more robust equations of volume or
basal area increment, especially their dependence on developmental stage.

From these examples, it is clear that growth and yield models cannot evolve without
incorporating ecological knowledge. Conversely, knowledge gained by forest biometricians
may also be useful to process-modellers and ecological experimentalists:

• experiments in controlled conditions, e.g. on CO
2
 greenhouses, are usually performed on

small trees and need to be extrapolated to ‘real ecosystems’; an interesting test would be to
compare such greenhouse results with the historical analysis of past growth trends; and

• the simplicity of growth analyses makes it possible to collect extensive data bases,
covering a large range of regions with different climatic and soil conditions; besides its
usefulness to foresters, regional information on ecosystem dynamics in the past will
certainly suggest some ideas on the cause of growth changes.

Acknowledgements

The authors thank an anonymous reviewer for valuable comments on this manuscript.

References

Arney, J.D. 1984. A modeling stategy for the growth projection of managed stands. Canadian Journal of Forest
Research 15:511–518.

Assmann, E. 1970. The principles of forest yield study. [Translation from the German original]. Pergamon Press,
Oxford. 506 p.

Becker, M., Nieminen, T.M. and Gérémia, F. 1994. Short-term variations and long-term changes in oak
productivity in northeastern France. The role of climate and atmospheric CO2. Annales Sciences Forestières
51:477–492.

Becker, M., Bert, G.D., Bouchon, J., Dupouey, J.L., Picard, J.F. and Ulrich, E. 1995. Long-term changes in forest
productivity in northeastern France: the dendroecological approach. In: Spiecker, H., Köhl, M. and Skovsgaard,
J.P. (eds.). Growth trends in European forests. Springer Vlg, Berlin. Pp. 143–156.

Bergès, L. 1998. Variabilité individuelle et collective de la croissance et de la densité du bois de Quercus petraea
(Matt.) Liebl. en relation avec les facteurs écologiques. Thèse de Doctorat. ENGREF, Nancy, France. 300 p.

Cannell, M.G.R., Thornley, J.H.M., Mobbs, D.C. and Friend, A.D. 1998. UK conifer forests may be growing faster
in response to increased N deposition, atmospheric CO2 and temperature. Forestry 71:277–296.

Corbeels, M., McMurtrie, R.E. and O’Connell, A.M. 2001. Modelling the effects of harvest residue management
on soil nitrogen supply in short rotation eucalytpus plantations in southwestern Australia. EFI Proceedings 41.
European Forest Institute, Joensuu, Finland.

Contesse, E. 2000. Proposition d’itinéraires sylvicoles pour les futaies régulières de Hêtre en Picardie. Mémoire
d’ingénieur FIF. ENGREF, Nancy, France. 46 p.

Delvaux, J. 1981. Différenciation sociale. Journal Forestier Suisse 132:733–749.
Dewar, R.C. 2001. The sustainable management of temperate plantation forests: from mechanistic models to

decision support tools. EFI Proceedings 41. European Forest Institute, Joensuu, Finland.
Dhôte, J.F. 1996. A model of even-aged beech stands productivity with process-based interpretations. Annales

Sciences Forestières 53:1–20.
Dhôte, J.F. and d. Hercé, E. 1994. Un modèle hyperbolique pour l’ajustement de faisceaux de courbes hauteur-

diamètre. Canadian Journal of Forest Research 24:1782–1790.
Dhôte, J.F. and Hervé, J.C. 2000. Changements de productivité dans quatre forêts de Chêne sessile depuis 1930:

une approche au niveau du peuplement. Annales Sciences Forestières 57:651–680.
Eichhorn, F. 1904. Beziehungen zwischen Bestandeshöhe und Bestandsmasse. Allgemeine Forst- und Jagd-

Zeitung 80:45–49.
Lanner, R.M. 1985. On the insensitivity of height growth to spacing. Forest Ecology and Management 13:143–

148.
MacFarlane, D.W., Green, E.J. and Burkhart, H.E. 2000. Population density influences assessment and application

of site index. Canadian Journal of Forest Research 30:1472–1475.



Assessing Long-Term Changes in Stand Productivity: a Case Study of Sessile Oak High Forests    117

Mäkelä, A. 1986. Implications of the pipe model theory on dry matter partitioning and height growth in trees.
Journal of Theoretical Biology 123:103–120.

McMurtrie, R.E., Halliday, J.C., Dewar, R.C., Tate, K.R., Corbeels, M. and Scott, N.A. 2001. Modelling long-term
changes in forest productivity and soil nitrogen supply following conversion of pasture to Pinus radiata
plantation. EFI Proceedings 41. European Forest Institute, Joensuu, Finland.

Meredieu, C. 1998. Croissance et production du Pin laricio (Pinus nigra Arnold ssp. laricio (Poiret) Maire):
élaboration et évaluation d’un système de modèles pour la prévision de caractéristiques des arbres et du bois.
Thèse de Doctorat, Univ. Claude Bernard, Lyon-1 (France). 250 p. + annexes.

Mohren, G.M.J. and Burkhart, H.E. 1994. Contrasts between biologically-based process models and management-
oriented growth and yield models. Forest Ecology and Management 69:1–5.

Pretzsch, H. 1996. Growth trends of forests in southern Germany. In: Spiecker, H., Köhl, M., Skovsgaard, J.P.
(eds.). Growth trends in European forests. Springer Vlg, Berlin. Pp. 107–132.

Reineke, L.H. 1933. Perfecting a stand-density index for even-aged forests. Journal of Agricultural Research
46:627–638.

Skovsgaard, J.P. and Henriksen, H.A. 1996. Increasing site productivity during consecutive generations of
naturally regenerated and planted Beech (Fagus silvatica L.) in Denmark. In: Spiecker, H., Köhl, M.,
Skovsgaard, J.P. (eds.). Growth trends in European forests. Springer Vlg, Berlin. Pp. 89–98.

Spiecker, H., Mielikäinen, K., Köhl, M. and Skovsgaard, J.P. 1996. Growth trends in european forests. Springer
Vlg, Berlin. 372 p.

Trencia, J. 1989. Sylviculture et production du Chêne sessile en France. Thèse de Doctorat. Univ. Nancy-I, Nancy,
France. 180 p.

Untheim, H. 1996. Has site productivity changed? A case study in the eastern Swabian Alb, Germany. In:
Spiecker, H., Köhl, M. and Skovsgaard, J.P. (eds.). Growth trends in European forests. Springer Vlg, Berlin. Pp.
133–148.

Valentine, H.T. 1985. Tree growth models: derivations employing the pipe-model theory. Journal of Theoretical
Biology 117:579–585.





Jean-Michel Carnus, Roderick Dewar, Denis Loustau, Margarida Tomé and Christophe Orazio (eds.)
Models for the Sustainable Management of Temperate Plantation Forests
EFI Proceedings No. 41, 2001

The Sustainable Management of Temperate
Plantation Forests: from Mechanistic Models to

Decision-Support Tools

R.C. Dewar

Unité de Bioclimatologie, INRA Bordeaux, France

Abstract

Sustainable forest management seeks to ensure that the behaviour of managed forest
ecosystems is environmentally and socio-economically acceptable. In this synthesis paper I
assess the actual and potential contribution of modellers to the development of sustainable
forest management, from scientific understanding of the underlying processes to practical
decision-support tools. On the scientific side, detailed forest ecosystem models have been
developed to understand and predict management and climate impacts on forest behaviour,
based on a comprehensive description of plant-soil and carbon-nutrient-water interactions.
However, two key processes for sustainable forest management – plant growth allocation and
soil nutrient cycling – continue to challenge modellers. Hydraulic homeostasis has recently
emerged as a guiding principle for modelling growth allocation. Combining this with root-
shoot functional balance leads to a simple scheme incorporating both hydraulic and
nutritional constraints on allocation for use in simplified, process-based growth models.
While this scheme predicts realistic growth and yield trends with stand age, the individual
roles played by allocation and stomatal conductance require further study. Hydraulic
homeostasis alone cannot separate these. Soil nutrient cycling models differ in how they
describe the regulation of microbial growth and diversity, two key processes for sustainable
management. Existing models of the former probably suffice (at least for N cycling), but
uncertainty in the latter presents a major limitation for predicting long-term ecosystem
behaviour; more experimental work is required here. Models should also incorporate non-
microbial immobilization processes. On the practical side, mensuration-based growth and
yield models have been incorporated into decision-support tools designed to find
management practices satisfying mainly economic objectives (e.g. maximum net present
value), subject to various constraints (e.g. even wood production). Information from process-
based models has yet to make a significant contribution. I discuss three options for enhancing
the information flow from process-based models to decision-support tools: (i) use of process-
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based growth indices to improve conventional growth and yield models; (ii) simplification
and direct incorporation of process-based growth models; and (iii) use of mass balance
analysis to generate robust constraints between, for example, wood yield, ecosystem C
storage and site nutrient loss. This last option provides a particularly promising way forward,
whereby the environmental criteria of sustainability might be incorporated as extra constraints
into established decision-support tools.

Keywords: forest, management, model, plantation, sustainability

Introduction

How can models contribute to sustainable forest management?

In its broadest sense, sustainable forest management is management that leads to
environmentally and socio-economically acceptable forest behaviour. Whatever the criteria
involved, they may be applied on a variety of timescales. For example, we might be
concerned about whether, under current management practices, the water table/water quality/
soil fertility/wood production/carbon storage/net present value/amenity value of a managed
area of forest will decline to unacceptable levels over the next five years, or over the next five
rotations. The word ‘sustainable’, however, implies taking the long-term view.

The first step, then, should be to define the sustainability criteria – the long-term objectives
of forest management – and this, of course, lies outside the domain of modelling itself. Given
these criteria, models can contribute directly to the assessment of sustainable forest
management, by providing both qualitative understanding and quantitative predictions of the
impact of various management practices on forest ecosystem behaviour over different
timescales.

Several examples of models, and their application to sustainable forest management
problems, are presented in this Proceedings. Broadly speaking, the models range in a quasi-
continuous fashion between two extremes. At one extreme are research-oriented models (e.g.
the Edinburgh Forest Model, Cannell and Thornley 2001), whose principal aim is to gain
scientific understanding of the complex interplay between the many plant and soil processes
involved. These models are generally characterised by a large number (sometimes hundreds)
of parameters, many of which are difficult to estimate directly (but not all of which are
necessarily critical to know accurately). At the other extreme are empirical, mensuration-
based, growth and yield models and decision-support systems which currently provide
practical tools for forest managers (e.g. GLOBULUS-CEF, Tomé et al. 2001). Lying between
these two extremes are simplified, biologically-based growth models (e.g. 3-PG, Landsberg et
al. 2001) which aim to capture the essential features of the underlying processes while using
only readily available data as input.

We might picture the overall contribution of models to sustainable forest management as a
flow of information from detailed process-based models, to simpler biologically-based
models and empirical growth and yield models, to decision-support systems (Figure 1).

What are the main challenges for modellers ?

Broadly speaking, modellers are presented with three main challenges if their models are to
contribute to the development of sustainable forest management practices.
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At the research end, there are two main scientific challenges. Firstly, because stemwood volume
production is (and is likely to remain) of central interest to forest managers, an adequate model
description of stemwood growth over a rotation is required, taking into account the main
hydraulic, nutritional, energetic and other (e.g. mechanical) constraints on carbon assimilation
and growth allocation. Of these, growth allocation is arguably the key challenge.

Second, assessment of the long-term sustainability of soil fertility, and of water and air
quality, requires an adequate representation of the processes underlying soil nutrient cycling
over timescales that include several rotations. Of central interest here are the processes
regulating the availability of soil inorganic nutrients. These processes include mineralisation,
immobilisation, inorganic inputs, leaching and gaseous emissions, and uptake by trees and
other vegetation.

Together, these two scientific challenges demand no less than the construction of complete
forest ecosystem models that couple the carbon, nutrient and water cycles in both the plant
and the soil.

At the applied end, a third challenge is to incorporate the results from detailed, process-
based models into practical tools for forest managers. How best can the scientific knowledge
from relatively complex ecosystem models be transferred to decision makers (Figure 1)?

It is not the aim here (nor was it that of our workshop) to attempt a comprehensive review
of forest models, but rather to highlight recent progress in developing and applying models to
problems of sustainable forest management. I assess how modellers are currently meeting the
three key challenges noted above – growth allocation, soil nutrient cycling, and knowledge
transfer – and suggest ways in which their contribution to sustainable forest management
might be developed in the future.

Modelling Growth Allocation

Various approaches to modelling growth allocation are exemplified in this Proceedings.
These range from mechanistic descriptions of the transport and utilization of labile C and N
growth substrates in trees (EFM, Cannell and Thornley 2001), to empirical schemes linking

Figure 1. Possible flows of information between different kinds of model and decision-support
systems: a = empirical yield predictions, b = growth indices, c = process-based yield predictions, d =
model simplification, e = mass balance constraints (for details, see ‘Knowledge Transfer’ section of the
main text). Examples of models and decision-support systems discussed in this Proceedings are
indicated in parentheses: EFM (Edinburgh Forest Model, Cannell and Thornley 2001), 3-PG
(Landsberg et al. 2001), GLOBULUS (Tomé et al. 2001) and the CEF forest management system
(Tomé et al. 2001).
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below-ground allocation to indices of soil fertility (3-PG, Landsberg et al. 2001) or water
stress (GRAECO, Loustau et al. 2001), to the use of constant allocation fractions (G’DAY,
McMurtrie et al. 2001b). These and other approaches were reviewed by Cannell and Dewar
(1994). In this section I discuss a more recent approach that has emerged out of attempts to
understand the age-related decline in stemwood growth.

Age-related decline in tree growth

This phenomenon, well–documented in foresters’ yield tables, is important in the context of
sustainable management because it is a key determinant of forest rotation length.
Nevertheless, the phenomenon remains inadequately understood at the process level. The
classical explanation, that maintenance respiration consumes an ever-increasing proportion of
photosynthates as trees grow larger (Kira and Shidei 1967), appears not to stand up to
experimental scrutiny (Ryan and Waring 1992; Ryan et al. 1995). Alternative hypotheses
have been proposed, invoking hydraulic (Ryan and Yoder 1997) and/or nutritional constraints
(Murty et al. 1996) on photosynthesis rates per unit foliage area, and on growth allocation to
foliage area, during stand development.

Pipe-model hypothesis

The latter hypothesis, that the age-related growth decline is associated with a decline in
foliage allocation, was first examined within the context of a growth model by Mäkelä
(1986), using the pipe-model theory (Shinozaki et al. 1964) according to which the sapwood
area: foliage area ratio, A

sw
/A

f
, is a constant. Mäkelä (1986) showed how maintenance of a

constant ratio A
sw

/A
f
 leads to a decline in tree growth rate with height, due to the ever-

increasing carbon demand by (non-productive) sapwood growth as the pipe length increases.
However, observed variations in A

sw
/A

f
 in trees led Whitehead et al. (1984) to examine in

more detail the theoretical behaviour of A
sw

/A
f
 expected from water balance considerations

(see Cannell and Dewar 1994). They considered the steady-state balance between water
transport within trees and the rate of foliage transpiration. On a leaf-specific basis this may be
written as

( ) DgK sLfs  =−ψψ (1a)

where: ψ
s
 and ψ

f
 are the soil and foliage water potentials, K

L
 is the leaf-specific hydraulic

conductivity between soil and foliage, g
s
 is the leaf stomatal conductance, and D is the air

water vapour pressure deficit. In the simplest analysis K
L
 ∝  A

sw
/hA

f
 where A

sw
 is the sapwood

cross-sectional area, h is tree height (or, more correctly, the hydraulic path length of the
xylem), and A

f
 is leaf area. Equation 1a then implies:

fs

s

f

sw  
ψψ −

∝ Dhg

A

A
(1b)

so that, in contrast to the pipe model, one might expect A
sw

/A
f
 to increase with tree height. A

more complete analysis would include the contribution to K
L
 from the hydraulic conductivity

between the soil and the roots (Magnani et al. 2000). An increase in A
sw

/A
f
 with tree height
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would lead to a more rapid height-related decline in tree growth than for the pipe model (all
else being equal), with potential consequences for the length of forest management cycles.

Hydraulic homeostasis

The conclusion from Equation 1b that A
sw

/A
f
 increases with tree height is not quite so

straightforward, because this depends on the associated responses of g
s
 and ψ

f
. However, it is

observed for certain species (especially trees) that the diurnal minimum foliage water
potential (ψ

f
) is rather constant over a range of soil moisture conditions and plant

development stages (Oren et al. 1999; Magnani et al. 2000). Hydraulic homeostasis in trees
appears to be regulated on diurnal timescales by stomatal conductance (Schäfer et al. 2000).
Such behaviour has been interpreted in terms of plant avoidance of catastrophic xylem
cavitation (Tyree and Sperry 1988; Sperry and Pockman 1993).

Whatever its functional significance, hydraulic homeostasis simplifies the analysis of water
balance relationships such as Equation 1b (Magnani et al. 2000). With constant ψ

f
 (and fixed

D and ψ
s
), Equation 1b reduces to:

hg
A

A
s

f

sw  ∝ (1c)

Thus, as tree height increases, the tree must either increase its sapwood area: foliage area
ratio (Magnani et al. 2000), or decrease its stomatal conductance (Yoder et al. 1994), or both
(Schäfer et al. 2000). Height-related changes in sapwood permeability (an implicit factor in
K

L
) may also occur (Pothier et al. 1989a; 1989b). The larger the increase in A

sw
/A

f
 with

height, the smaller the associated decrease in g
s
. Either response would lead to a decline in

growth rate, through reductions in total leaf area and photosynthesis per unit leaf area,
respectively.

For example, note that the pipe model hypothesis (constant A
sw

/A
f
) is not inconsistent with

water balance (Equation 1b) and hydraulic homeostasis (Equation 1c), provided that it is
associated with a strong decline in stomatal conductance with height (i.e. g

s
 ∝  1/h). At the

other extreme, if g
s
 were independent of height then Equation 1c would imply that A

sw
/A

f
 ∝  h.

Thus, hydraulic homeostasis permits a continuous family of dependences of A
sw

/A
f
 on tree

height, depending on height-related changes in stomatal conductance (and sapwood
permeability).

The implication here is that the age-related growth decline in trees (and its management
consequences) cannot be quantified using hydraulic homeostasis alone; one needs an additional
relationship between either g

s
 or A

sw
/A

f
 and tree height. Changes in sapwood permeability with

height also need to be taken into account. These are future challenges for modellers.

Combining hydraulic and nutritional constraints on growth allocation

Mäkelä (1986) combined the pipe-model constraint between sapwood and foliage allocation
with a functional balance constraint between the assimilation of carbon and nitrogen
(Davidson 1969), thus constraining foliage-root allocation. The combined model describes
both hydraulic and nutritional constraints on growth allocation to foliage, sapwood and roots,
although Mäkelä (1986) did not take into account the associated decline in stomatal
conductance implied by water balance considerations (g

s
 ∝  1/h, Equation 1c).
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As noted above, an alternative to the pipe model would be to assume that g
s
 is independent

of height, leading to A
sw

/A
f
 ∝  h (Equation 1c). One could then combine this latter relationship

(rather than the pipe model) with functional balance. This has been done by the present
author in the SUSTAIN model of C-N-H

2
O interactions in trees. Table 1 summarises the key

assumptions of SUSTAIN (in its simplest version for constant environmental conditions); full
mathematical details will be given elsewhere (Dewar, in preparation). Note that the
expression used for the water-use efficiency (WUE, Table 1) implies a constant (height-
independent) ratio of intercellular to leaf surface CO

2
 concentration, reflecting the underlying

assumption that g
s
 is independent of height.

Table 1. Processes and their description in the SUSTAIN model, in the version for constant
environmental conditions.

Process Description in the model

Absorbed radiation (APAR) Beer’s law function of foliage biomass

Gross primary productivity (GPP) GPP = LUE × APAR; LUE = light-use efficiency
(a saturating function of [CO

2
]).

Respiration Fixed fraction of GPP.

Plant N uptake (U) U = σ
N
 × R; σ

N
 = specific root activity, R = fine root biomass.

C allocation to foliage, sapwood Constrained by hydraulic homeostasis and functional balance:
and fine roots (ψ

s
 – ψ

f
)kA

sw
/h = E

c
 = GPP/WUE,

U = ν × GPP.
ψ

s
 = soil water potential, ψ

f
 = leaf water potential (constant),

k = sapwood specific hydraulic conductivity, A
sw

 = sapwood
cross-sectional area, h = sapwood height (sapwood biomass
∝  A

sw 
× h), E

c
 = canopy transpiration, WUE = water-use

efficiency ∝  [CO
2
]/D (D = air saturation deficit),

ν = mean plant N:C ratio (constant).

Height growth Proportional to new foliage growth.

Senescence Constant rates per biomass for foliage, sapwood and fine roots.

Table 2. Sensitivity analysis of the SUSTAIN model under various constant environments. Base case:
root specific N uptake σ

N
 = 0.02 kg N (kg fine root C)–1 yr–1, atmospheric CO

2
 concentration = 350

ppm, air saturation deficit D = 1 kPa. For each of scenarios 1–3, one of these variables is doubled while
the other two are fixed at their base values. t

c
 = canopy closure time (when LAI has a maximum), LAI

max

= maximum leaf area index (at canopy closure), h
10

 = tree height at 10 yrs (site index), T
rot

 = rotation
period (when MAI has a maximum), MAI

max
 = maximum MAI.

Scenario t
c

LAI
max

h
10

T
rot

MAI
max

(yr) (m2 m–2) (m) (yr) (m3 ha–1 yr–1)

Base case 9 4.1 11 37 11
1. σ

N
 × 2 6 5.4 17 27 19

2. D × 2 8 2.9 8 31 10
3. CO

2
 × 2 8 5.9 16 44 15
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Table 2 illustrates the predicted sensitivity of some common forestry variables to
environmental conditions. The positive growth response to a doubling of the specific root
activity (σ

N
, a measure of soil inorganic N availability) reflects an increase in foliage/root

allocation due to functional balance; there is no change in the light-use efficiency, LUE,
which is assumed to be independent of soil fertility (Table 1).

The negative growth response to a doubling of air saturation deficit (D) reflects a decrease
in foliage/sapwood allocation due to hydraulic homeostasis; LUE is assumed to be
independent of D (like σ

N
).

Increasing atmospheric [CO
2
] leads to increases in both light- and water-use efficiencies

(the effect on WUE being dominant). As a result, foliage/sapwood allocation is increased
through hydraulic homeostasis, but foliage/root allocation is decreased through functional
balance. The net effect (for the parameter values used in Table 2) is a higher foliage
allocation (relative to the base case) up to canopy closure and a lower foliage allocation
thereafter; the latter response, however, is offset by the CO

2
-stimulated increase in LUE,

leading to an overall positive growth response.
These simulations illustrate the way in which simple hydraulic and nutritional constraints

on growth allocation may be combined. Due to its simplicity, the growth responses of the
model can be interpreted relatively easily in terms of the underlying processes.

The above scheme could be extended to explore the consequences of different assumptions
for the g

s
-height relationship, intermediate between the extremes represented by SUSTAIN

and the pipe model. For example, does the trade-off between height-related changes in A
sw

/A
f

and g
s
 (Equation 1c) mean that the decline in tree growth with stand age is relatively

insensitive to what one assumes about their individual height dependences?
SUSTAIN is also being developed to incorporate temporal variation in environmental

conditions, and to couple the tree growth model to a dynamic model of C, N and H
2
O balance

in the soil, following an approach developed previously (Dewar 1997).

Modelling Soil Nutrient Cycling

The models of soil nutrient cycling described in this Proceedings differ in their
characterisation of litter and soil organic matter (SOM), i.e. the number of pools represented,
and their physico-chemical properties. GRAECO (Loustau et al. 2001) contains a single soil
layer. ASPECTS (Rasse et al. 2001) has 2 pools: litter and SOM. G’DAY (McMurtrie et al.
2001b) uses the CENTURY decomposition model (Parton et al. 1993) with 4 litter pools
(structural and metabolic, both above- and below ground), 3 SOM pools (active, slow and
passive) and a soil inorganic N pool. MIT (Corbeels et al. 2001) has a CENTURY-like
structure with an additional pool for microbial biomass. EFM (Cannell and Thornley 2001)
also includes a soluble C pool and separates soil inorganic N into ammonium and nitrate.

In this section, however, I have chosen to compare some of these models in terms of their
characterisation of microbial growth. This choice is motivated by the fact that microbial
growth is a key process for 3 major aspects of sustainable forest management: forest
productivity, water quality and air quality.

The key role of microbial growth

Figure 2 shows the main pools and fluxes of nitrogen (N) in the soil. The rate of change of
soil inorganic N (N

inorg
) is the balance between gross mineralisation (M) and immobilisation
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(I) through microbial growth, external N inputs by fertiliser application, atmospheric
deposition and fixation (N

input
), losses through leaching and gaseous emissions (N

loss
) and plant

uptake (U):

UNNIM
t

N
−−+−=  lossinput 

inorg  
d

d
(2a)

The fluxes of direct interest to sustainable management are U (affecting forest productivity –
see Table 2, scenario 1) and N

loss
 (affecting water and air quality). Both of these fluxes depend

to a large extent on the soil inorganic N pool, which is therefore the central pool of interest.
The key soil process regulating soil inorganic N is microbial growth, which drives
mineralisation and immobilisation, and thus the internal N cycling between soil inorganic N,
microbial N and dead soil organic N (Figure 2).

It would seem advantageous, therefore, to model microbial biomass and growth explicitly,
in order that the processes of mineralisation and immobilisation can be adequately described.
This approach was first elaborated by Parnas (1975), who developed a simple model of SOM

Figure 2. The principal pools and fluxes of nitrogen in the litter/soil. The key pool for sustainable
forest management is soil inorganic N, which regulates both plant N uptake (U) (hence productivity)
and N losses (N

loss
) (hence water and air quality). The key soil process regulating soil inorganic N is

microbial growth, which drives mineralisation (M) and immobilisation (I), and thus the internal cycling
of N between soil inorganic N, microbial biomass and dead soil organic matter. Two additional fluxes
– abiotic incorporation of inorganic N into existing soil organic matter, and conversion of inorganic to
organic N by mycorrhizae without biomass production – are not included but may also be important
(Aber et al. 1998).
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decomposition, based on the assumption that the rate of decomposition of any substrate is
proportional to the growth rate of its decomposers.

To illustrate this approach and its relevance to sustainable forest management, let us assume
for simplicity that N

loss
 and U are directly proportional to the soil inorganic N pool: N

loss
 =

λ
loss

N
inorg

 and U = λ
u
N

inorg
 (λ

u
 might depend on fine root biomass, R – see Table 1). Also, we

may write M = ν
SOM

G
m
/Y

m
 and I = ν

m
G

m
, where G

m
 is the microbial growth rate, Y

m
 is the

microbial growth efficiency, and ν
SOM 

and ν
m
 are the N:C ratios of soil organic matter and

microbial biomass, respectively. Equation 2a then becomes:

( ) inorgulossinput mm
m

SOMinorg  
d

d
NNGv

Yt

N
λλν +−+





−= (2b)

Because N
inorg

 is a relatively small, fast-turnover pool compared with the other pools in the
soil, it may be considered to be in an approximate, ‘moving’ steady state which tracks the
slower evolution of the rest of the system. Then, at any one time the value of N

inorg
 is given by

solving dN
inorg

/dt = 0 using Equation 2b. Doing this, the corresponding rates of plant N uptake
and N loss can be written as:
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where: ≈ indicates the moving steady-state approximation. Equations 2c and 2d show
explicitly the key dependence of plant N uptake and N loss on microbial growth rate (G

m
).

Modelling microbial growth

In view of these remarks, it is useful to compare models in their characterisation of the key
process of microbial growth (G

m
).

In CENTURY, the active pool represents both live microbial biomass and dead microbial
products; live microbial biomass is not explicitly represented. The decomposition rate of each
litter and SOM pool (including the active pool) is proportional to its C content (with soil
moisture and temperature modifiers). Microbial growth is represented as the production of
new active SOM, and is a linear combination of the C contents of the remaining six C pools.
This approach, which is also used in the soil sub-model of G’DAY (McMurtrie et al. 2001b),
assumes that microbial growth is limited by C substrate alone, and not by soil inorganic N
availability or microbial biomass.
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The MIT model (Corbeels et al. 2001) represents microbial biomass explicitly. N-limitation
of microbial growth is introduced via a decomposition rate modifier which depends (in the
notation of Figure 2) on the N flux ratio (M+N

input
–N

loss
–U)/I representing the supply of

inorganic N relative to microbial N demand. As in CENTURY, microbial biomass itself is
assumed not to limit microbial growth. The dependence of microbial growth on a flux ratio is
a useful empirical device, although from a mechanistic point of view it may be more
appropriate to relate microbial growth to the soil inorganic N pool.

Thornley and Verberne (1989) modelled microbial growth rate (G
m
) as a function of the soil

organic C pool (C
SOM

), the soil inorganic N pool (N
inorg

), and microbial biomass (B) (their
Equation 16). They assumed that G

m
 is a Michaelis-Menten function of C

SOM
 and N

inorg
, and is

proportional to Bq, where q = 1 and 2/3 represent autocatalytic growth and surface-limited
growth, respectively. They also assumed that B has a ceiling value that is proportional to C

SOM
,

the rationale being that soil microbes must physically attach themselves to their substrates in
order to grow, and the number of attachment sites increases with C

SOM
. This model provides a

simple yet flexible method of combining the main factors regulating microbial growth.
In a further refinement, Thornley (1998) introduced a soluble C pool, representing labile C

metabolites such as glucose, other sugars and organic acids. Microbial growth is then a function
of this soluble C pool rather than of SOM carbon. This approach, which is also used in the
Edinburgh Forest Model (Cannell and Thornley 2001), allows other processes such as root
exudation and C leaching to be modelled. Thornley (1998, p.78) remarked, however, that in many
respects the resulting increase in complexity, in comparison with the earlier model of Thornley and
Verberne (1989), made little difference to the behaviour of the system, and that ‘the soil appears to
be relatively passive in its responses compared with the very plastic responses of the plant to the
environment’. This conclusion suggests that a relatively simple model of microbial growth (e.g.
Thornley and Verberne 1989) suffices to capture the essential features of soil N cycling.

However, non-microbial immobilization processes may also be important in temperate
forest ecosystems (Aber et al. 1998). These include abiotic incorporation of inorganic N into
existing SOM, and conversion of inorganic to organic N by mycorrhizae without microbial
biomass production. The long-term effect of these processes on soil N cycling in forest
ecosystems remains to be explored by modellers.

Microbial diversity

Two additional key variables in Equations 2c and 2d are the N:C ratios of microbial biomass
and dead soil organic matter (respectively, ν

m
 and ν

SOM
).

The CENTURY model (Parton et al. 1993) assumes an empirical relationship between the
N:C ratio of newly-formed SOM and the soil inorganic N pool (N

inorg
), reflecting underlying

shifts in microbial species composition with soil N availability. However, the parameters of
this relationship are poorly known, and sensitivity analysis of the G’DAY model shows that
this uncertainty presents a major limitation for predicting long-term trends in the carbon sink
strength of forests (McMurtrie et al. 2001a).

The empirical link between SOM N:C ratios and N
inorg

 might be explored by modellers at a
more mechanistic level. Following the approach of Parnas (1975), for example, one might
represent several microbial pools – one for each substrate – with different (but fixed) N:C
ratios and with growth rates which differ in their dependence on N

inorg
.

In summary, current soil nutrient cycling models serve to highlight the uncertainty concerning
the regulation of microbial diversity, and to explore the long-term implications of that
uncertainty. Modellers should also explore the role of non-microbial immobilization processes
(Aber et al. 1998). Ultimately, progress on these fronts will require further experimental studies.
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Knowledge Transfer

Tomé et al. (2001) and Pinto et al. (2001) each describe a decision-support tool designed to
find the management regime (e.g. cutting cycle, labour scheduling plan) that achieves a
certain objective (e.g. maximum net present value, minimum total cost) subject to various
constraints (e.g. even wood production, even workforce distribution). A common feature of
these systems is that they are set up to solve constrained optimization problems. How can
process-based models contribute here?

Tomé et al. showed how a conventional growth and yield model (GLOBULUS) for
Eucalyptus globulus has been incorporated into the CEF decision-support system for forest
management in Portugal (Figure 1, flow ‘a’). Due to its modular nature, the GLOBULUS-
CEF system may provide a useful framework into which knowledge from process-based
models may be incorporated. In this regard, however, a potentially serious limitation of
detailed, process-based models is their high data input requirement (see also Discussion by
Dhôte and Hervé 2001).

In this section I examine four ways in which this problem is currently being addressed
(Figure 1, flows ‘b–e’). The first three of these (growth indices, process-based yield
predictions, model simplification) aim to predict growth and yield from process-based
models using readily available data only. The fourth approach (mass balance constraints)
aims to provide general insights and principles for sustainable forest management that are to
some extent independent of the model parameters.

Growth indices (Figure 1, flow ‘b’)

In this approach, detailed, process-based models are used in conjunction with readily
available input data, to derive summary growth indices that capture temporal and spatial
variations in climate and soil properties, for example. The growth indices are then used to
modify the parameters of empirical growth and yield models, with the aim of improving their
predictive power.

For example, using the detailed, process-based model BIOMASS (McMurtrie et al. 1990),
Snowdon et al. (1999) calculated annual photosynthetic carbon fixation (P) for Pinus radiata
D. Don grown in the Australian Capital Territory (ACT). They assessed the use of P as a
growth index to improve the Schumacher yield model (Schumacher 1939). Significant
improvement in the descriptive power of the Schumacher model was obtained when the
maximum yield parameter and time variable in that model were modified as functions of P.
Because climatic data across the ACT are highly correlated, P calculated at a single location
was able to capture the annual variability for the entire region. Spatial variability was taken
into account through indices of site fertility, geological substrate and soil water-holding
capacity, allowing further improvements to be made.

Process-based yield prediction and model simplification (Figure 1, flows ‘c’ and ‘d’)

Process-based models may be used to predict yield directly (Figure 1, flow ‘c’) as an
alternative to empirical yield models (Figure 1, flow ‘a’). In order to reduce the input data
requirements, some model simplification is necessary (Figure 1, flow ‘d’), with only the
essential features of the underlying processes being retained. Again, the aim is to improve on
the predictive power of existing empirical yield models. Of course, all models (including so-
called detailed ones) are simplifications of reality.
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One advantage of using simplified, process-based models (Figure 1, flow ‘c’) over the use
of growth indices within conventional yield models (Figure 1, flow ‘b’) is that, by
construction, process-based models satisfy the constraint of mass conservation. This feature
constitutes one of the crucial differences between process-based models and empirical growth
and yield models. The constraint of mass conservation is especially important for the
assessment of sustainable forest management, where the criteria include consideration not
only of wood yield, but also of carbon storage, nutrient loss and other ecosystem properties
whose prediction demands a rigorous account of carbon, nutrient and water balance (see
below). Growth indices are not sufficient for this purpose.

The 3-PG model is an example of a simple, process-based yield predictor, which leads to
improved estimates of growth and yield compared with conventional models (Landsberg et
al. 2001). Such models may be derived or assessed from a more mechanistic basis using more
detailed models. For example, detailed canopy radiation interception models can be used to
assess simpler ‘big-leaf’ approximations such as Beer’s law. The simplifying concepts of
light and carbon use efficiencies have also been assessed in this way (Dewar et al. 1998).

The 3-PG model takes into account plant carbon and water balance only. GRAECO
(Loustau et al. 2001) and ASPECTS (Rasse et al. 2001) include carbon and water balances in
the plant and soil. When considering the inclusion of nutrient balance, one may question
whether model simplification continues to be feasible, or whether the complexity of C-N-H

2
O

cycling in trees and soil (as represented in the Edinburgh Forest Model, for example) is an
essential feature that cannot be avoided. Analysis of models such as SUSTAIN and G’DAY
suggest that it may be possible to simplify C-N-H

2
O interactions in the plant and soil while

retaining a level of biological realism that is adequate for many applications.

Mass balance constraints (Figure 1, flow ‘e’)

As noted above, a key feature of process-based models is that, by construction, they satisfy
mass conservation. Mass balance imposes a powerful constraint on sustainable management,
and is especially useful in analysis of the long-term, quasi-equilibrium behaviour of the
system. For this reason, sustainable behaviour is often defined by modellers as the behaviour
in the steady state (Dewar and McMurtrie 1996; Thornley and Cannell 2000; Cannell and
Thornley 2001; McMurtrie et al. 2001b). What, then, can steady-state mass balance tell us?

Let us imagine the hypothetical situation where a certain forest management regime is
applied indefinitely over successive rotations to a given area of land. The system might also
be subjected to periodic disturbance by storms and herbivory, for example, but I will exclude
long-term climate change here (see Loustau et al. 2001; Rasse et al. 2001).

After a transient that depends on the initial state, the system will eventually tend to fluctuate
around a time-averaged steady state. In this steady state, the amounts of C, N and H

2
O in the

various tree, litter and soil compartments, when averaged over a management or disturbance
cycle, remain constant over time. By definition, the steady-state time-averaged fluxes of C, N
and H

2
O into each compartment are equal to the corresponding fluxes out. The steady state

(i.e. sustainable) properties will depend on the management regime applied.
The steady state might seem of limited practical interest, given that it may take ecosystems

centuries to reach equilibrium (McMurtrie et al. 2001b). Nevertheless, steady-state analysis is
useful for several reasons. Firstly, steady-state analysis forces us to take a long-term view of
ecosystem behaviour (implicit in the word ‘sustainable’). Secondly, steady-state analysis
helps us to understand the intrinsic nature of the link between ecosystem behaviour and
management practices, independent of transient effects. Thirdly, the steady-state balance of
fluxes yields simple but powerful constraints on ecosystem behaviour, leading to useful
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insights into the relationship between sustainable yield, ecosystem carbon storage and
ecosystem N loss rates (see below). Fourthly, on certain timescales it is possible to divide the
ecosystem into ‘fast’ and ‘slow’ pools (as in Equations 2b–c), whereby the steady-state
approximation can be applied to the fast-turnover pools, even when the ecosystem as a whole
has not reached a steady state (McMurtrie et al. 1992). Lastly, the steady state may serve as a
practical guide to where the system is heading at any one time.

Figure 3 shows the major C and N pools and fluxes in a forest plantation ecosystem. In the
steady state, the balance of plant C fluxes is (Figure 3a):

Figure 3. (a) Major carbon pools (kg C m–2) and fluxes (kg C m–2 yr–1) in a forest plantation. C
p
 = plant

C, C
s
 = litter and soil C, GPP = gross primary productivity, R

p
 = plant respiration, Y = C removed in

harvested products, L
n
 = natural plant litter production, L

h
 = slash input, R

s
 = soil respiration. (b)

External fluxes of nitrogen (kg N m–2 yr–1) into and out of a forest plantation (outer box).
N

h
 = N removed in harvested products. N

input
 = N deposition, fixation and fertilisation. N

loss
 = N leaching

and gaseous emissions. In the steady state, C and N fluxes into each box balance the corresponding
fluxes out, with implications for the relationship between Y, ecosystem carbon storage (C

p
 + C

s
) and

N
loss

 (see text).

><+><+><+><=>< hnp  LLRYGPP (3a)

where: GPP is gross primary production (i.e. photosynthesis), Y is the removal rate of C in
forest products, R

p
 is plant respiration, L

n
 is the rate of natural litter production (biomass

turnover + plant mortality), L
h
 is the rate of slash input to the soil from thinning and harvest

debris, and <…> denotes the time-average over a management or disturbance cycle. In
Equation 3a, <Y> represents the steady-state (i.e. sustainable) yield.
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The steady-state balance of soil C fluxes is:

><=><+>< shn   RLL (3b)

where: R
s
 is soil respiration. Finally, the steady-state balance of ecosystem N fluxes is (Figure 3b):

><+><=>< losshinput   NNN (3c)

where: N
input

 is external inputs from N deposition, fixation and fertiliser application, N
h
 is the

removal rate of N in harvested forest products, and N
loss

 is the rate of N loss through leaching
and gaseous emissions.

These relationships, being based on mass balance alone, are useful because they provide
constraints on the C and N fluxes in the steady state that do not depend on the details of the
underlying mechanisms involved. The following simple example illustrates how the steady-
state balance of fluxes can provide useful constraints on the sustainable yield and its
relationship to other quantities in the steady state.

Let C
p
 and C

s
 denote the plant and soil carbon contents. Also let k

h
 denote the fraction of

plant biomass harvested each year, and β the fraction of harvested biomass that is then
removed as forest products (the remaining fraction being left on site as slash debris). Then the
rate of C removal in forest products is Y = βk

h
C

p
 and the rate of slash input to the soil is

L
h
 = (1–β)k

h
C

p
. We now make 3 simplifying assumptions: (i) natural litter production and soil

respiration follow first-order kinetics, L
n
 = k

n
C

p
 and R

s
 = k

s
C

s
, where k

n
 and k

s
 are rate

constants; (ii) plant respiration is proportional to gross primary productivity, R
p
 = (1-φ)GPP,

where φ is the ratio of net to gross primary productivity; and (iii) gross primary productivity
is a saturating function of plant biomass, GPP = G

max
C

p
/(C

p
 + C

0
), where G

max
 is the maximum

GPP (corresponding to 100% absorption of incident radiation) and C
0
 is the plant biomass at

which GPP is 50% of G
max

. This last assumption is a crude numerical approximation, but it
captures the essential feature for the conclusion that follows.

Substituting these assumptions into Equations 3a and 3b, and solving for the steady-state
carbon contents C

p
 and C

s
, it is straightforward to show that the sustainable ecosystem carbon

storage (EC = C
p
+C

s
) and the sustainable yield (Y = βk

h
C

p
) are given by:
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Figure 4 shows the predicted relationship between <EC> and <Y> as the biomass harvest
fraction k

h
 is increased from 0 to 40% yr–1, for two values of the harvest removal fraction
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(β = 50% and 100%). The figure illustrates that there is no simple inverse relationship
between carbon stored and wood yield, in accordance with the simulations of the Edinburgh
Forest Model presented by Cannell and Thornley (2001). Rather, starting from an unmanaged
forest (k

h
 = 0) at which carbon storage is maximal and wood yield is zero (Figure 4, point A),

the relationship is inverse only up to a critical harvest fraction (given by k
h
 = 12% yr–1 in the

example shown in Figure 4, point B) at which the maximum possible wood yield is obtained.
Beyond this point, carbon storage and wood yield decline together due to the reduction in
photosynthesis by heavy thinning, reaching zero at another critical value of k

h
 (equal to 40%

yr–1 in the example shown in Figure 4, point C) which represents the limit of sustainability.
Comparison of Figure 4 with Figure 5 of Cannell and Thornley (2001) suggests that point B
is analogous to the optimal wood harvesting rate of 10–20% yr–1 obtained using the
Edinburgh Forest Model.

Figure 4. Relationship between steady-state ecosystem carbon storage (EC) and wood volume yield (Y)
(Eqns 4a-b), as the harvest fraction (k

h
) increases from 0 to 40% yr-1, for two values of the removal

fraction (β). Other parameter values: G
max

 = 3 kg C m-2 yr-1, C
0
 = 3 kg C m-2, φ = 0.5, k

n
 = 0.1 yr-1, k

s
 =

0.05 yr-1, wood density = 270 kg C m-3. Point A: unmanaged forest (k
h
 = 0) with maximum carbon

storage and zero wood yield. Point B: forest managed for maximum yield; further analysis shows this
to occur when the ratio k

h
/k

n
 is equal to (1/√α) – 1 where α = k

n
C

0
/φG

max
 (giving k

h
 = 12% yr-1 here).

Point C: unsustainable forest for which carbon storage and wood yield are both zero; this occurs when
k

h
/k

n
 is equal to (1/α) – 1 (giving k

h
 = 40% yr-1 here). The relationship between EC and Y depends on β,

but the values of k
h
 at points A, B and C are independent of β. The present Figure may be compared

with Figure 5 of Cannell and Thornley (2001).

The steady-state N loss rate through leaching and gaseous emissions can be calculated from
the N flux balance (Equation 3c). Denoting the average N:C ratio of forest products by ν

h
, we

have <N
h
> = ν

h
 <Y>,

 
so that Equation 3c implies that:

><−><=>< YNN hinputloss   ν (4c)
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Thus, for a fixed N input rate, harvesting for maximum sustainable yield (as at point B in
Figure 4) also minimises the sustainable N losses (in accordance with Cannell and Thornley
2001). For example, with average atmospheric N inputs of 10 kg N ha–1 yr–1, a N:C ratio of
forest products (wood) of ν

h
 = 0.001 kg N kg–1 C, a harvest removal fraction of β = 100%,

and other parameters as in Figure 4, Equations 4b–c predict that the minimum rate of N loss
(obtained with k

h
 = 12% yr–1) represents 54% of the total N output (i.e. 5.4 kg N ha–1 yr–1), the

remaining 46% being removed in harvested products. With β = 50%, the minimum N loss
increases to 77% as more plant N is transferred to the soil in slash debris.

The conclusions from this simple model are in broad agreement with simulations of the
Edinburgh Forest Model (Cannell and Thornley 2001), essentially because these
conclusions reflect mass balance constraints (which all process-based models satisfy by
construction) and the saturating dependence of GPP on plant biomass (which all reasonable
process-based models mimic). Thus, steady-state mass balance analysis can contribute
general insights into sustainable forest management that are to some extent independent of
the model parameters.

Of course, mass balance is a general constraint that also applies to non-steady state
conditions. For example, McMurtrie and Dewar (1997) used a mass balance model (N-BAL),
in conjunction with the Schumacher equation for stem volume growth, to evaluate the balance
between N removals (due to harvesting and fire) and N inputs (both natural and as added
fertilizer) in managed stands of karri (Eucalyptus diversicolor) in southwestern Australia.
Their analysis led to a criterion for estimating the depletion (or accretion) of site N over a
single forest rotation (effectively, a non-steady state analogue of Equation 4c).

Relatively robust relationships between wood yield, carbon storage and N loss, derived
from mass balance, might be incorporated as additional constraints within established
decision-making systems, such as that developed by CEF (Figure 1, flow ‘e’). Thus, net
present value could be maximised subject to constraints that include the environmental
criteria of sustainability, not just even wood flow.

Summary and Recommendations

I have tried to give some indication of the actual and potential contribution of modellers to
the development of sustainable forest management. The challenges are both scientific and
practical in nature.

On the scientific side, the last 10 years has seen significant progress in the development of
detailed forest ecosystem models based on a comprehensive description of plant-soil and
carbon-nutrient-water interactions. By exploring ‘what-if’ scenarios, these models have
helped us to better understand how management practices might affect such aspects of
ecosystem behaviour as tree growth, soil fertility and carbon storage. Through sensitivity
analyses, they have also helped to identify key uncertainties for further study. Two key
processes for sustainable forest management – plant growth allocation and soil nutrient
cycling – continue to challenge modellers.

Hydraulic homeostasis has recently emerged as a guiding principle for modelling growth
allocation. Combining this with root-shoot functional balance leads to a simple scheme
incorporating both hydraulic and nutritional constraints on allocation for use in simplified,
process-based growth models. While this allocation scheme predicts realistic growth and
yield trends with stand age, the individual roles played by allocation and stomatal
conductance require further study. Hydraulic homeostasis alone cannot separate these.
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Soil nutrient cycling models differ in how they describe the regulation of microbial growth and
diversity – two key processes for sustainable management. Existing models of the former
probably suffice (at least for N cycling), but uncertainty in the latter presents a major limitation
for predicting long-term ecosystem behaviour; further experimental work is required here. The
role of non-microbial immobilization processes should also be explored in models.

On the practical side, mensuration-based growth and yield models have been incorporated into
decision-support tools designed to find management practices that satisfy mainly economic
objectives (e.g. maximum net present value), subject to various constraints (e.g. even wood
production). Information from process-based models has yet to make a significant contribution.

Three options for enhancing the information flow from process-based models to decision-
support tools are: (i) use of process-based growth indices to improve conventional growth
and yield models; (ii) simplification and direct incorporation of process-based growth
models; and (iii) use of mass balance analysis to generate robust constraints between (for
example) wood yield, ecosystem C storage and site N loss.

Perhaps the immediate challenge for process-based modellers is to convince foresters and
other users that they (modellers) actually have something to contribute. In the short-term this
might best be achieved through option (iii) above, which is attractive because the
environmental criteria of sustainability could be incorporated as extra constraints into
established decision-support tools. Option (i) could also be developed in order to improve
conventional growth and yield predictions, to be replaced in the longer-term by option (ii).
The modular nature of the CEF forest management system (Tomé et al. 2001) makes it a
prime candidate in which to pursue these options.
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